首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
admin
2016-10-26
42
问题
设A=(a
ij
)是m×n矩阵,β=(b
1
,b
2
,…,b
n
)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b
1
x
1
+b
2
x
2
+…+b
n
x
n
=0的解,证明β可用A的行向量α
1
,α
2
,…,α
m
线性表出.
选项
答案
构造一个联立方程组 [*] 简记为Cx=0,显然,(Ⅲ)的解必是(Ⅰ)的解,又因(Ⅰ)的解全是(Ⅱ)的解,于是(Ⅰ)的解也必全是(Ⅲ)的解,所以(Ⅰ),(Ⅲ)是同解方程组,它们有相同的解空间.从而n一r(A)=n一r(C),即r(A)=r(C),亦即r(α
1
,α
2
,…,α
m
)=r(α
1
,α
2
,…,α
m
,β). 因此极大线性无关组所含向量个数相等,这样α
1
,α
2
,…,α
m
的极大线性无关组也必是α
1
,…,α
m
,β的极大线性无关组,从而β可由α
1
,α
2
,…,α
m
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/EFu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
A、 B、 C、 D、 C
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
试确定P的取值范围,使得y=x3-3x+p与x轴(1)有一个交点;(2)有两个交点;(3)有三个交点.
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
质点P沿着以AB为直径的半圆周,从点A(1,2)运动到点B(3,4)的过程中受变力F作用(如图),F的大小等于点P与原点O之间的距离,其方向垂直于线段OP与y轴正向的夹角小于π/2,求变力F对质点P所作的功.
已知(1)计算行列式|A|.(2)当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
设y=y(x)是由函数方程㏑(x+2y)=x2-y2所确定的隐函数.(1)求曲线y=y(x)与直线y=-x的交点坐标(x0,yo);(2)求曲线y=y(x)在(1)中交点处的切线方程.
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
求f(x,y,z)=2x+2y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
随机试题
A.面色深浓B.面色浊暗C.面色枯槁D.病色结聚而深滞“望色十法”中的“甚”是指
A.乳酸B.氨基酸C.肝糖原D.肌糖原参与维持血糖浓度相对恒定的糖原主要是
(2007年第24题)核酸的最大紫外光吸收值一般在哪一波长附近
初产妇,35岁,孕39周,于0:00临产,10:00自然破水,宫口开大3cm,16:00宫口开全,18:30低位产钳助娩一男婴,下列诊断正确的是
经营者有不正当价格行为的罚款数额为()。
下面关于全面预算的说法中,错误的是()。
关于人民陪审员,下列说法符合法律规定的是()。
3,2,,()
Ultralight(超轻型的)airplanesarearecentdevelopmentinaviationthatprovidewhataviationenthusiastshavelongbeenseeking:b
某西方国家高等院校的学费急剧上涨,其增长率几乎达到通货膨胀率的两倍。从1980到1995年中等家庭的收入只提高了82%,而公立大学的学费的涨幅比家庭收入的涨幅几乎多了3倍,私立院校的学费在家庭收入中所占的比例几乎是1980年的2倍。高等教育的费用已经令中产
最新回复
(
0
)