首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
admin
2016-10-26
69
问题
设A=(a
ij
)是m×n矩阵,β=(b
1
,b
2
,…,b
n
)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b
1
x
1
+b
2
x
2
+…+b
n
x
n
=0的解,证明β可用A的行向量α
1
,α
2
,…,α
m
线性表出.
选项
答案
构造一个联立方程组 [*] 简记为Cx=0,显然,(Ⅲ)的解必是(Ⅰ)的解,又因(Ⅰ)的解全是(Ⅱ)的解,于是(Ⅰ)的解也必全是(Ⅲ)的解,所以(Ⅰ),(Ⅲ)是同解方程组,它们有相同的解空间.从而n一r(A)=n一r(C),即r(A)=r(C),亦即r(α
1
,α
2
,…,α
m
)=r(α
1
,α
2
,…,α
m
,β). 因此极大线性无关组所含向量个数相等,这样α
1
,α
2
,…,α
m
的极大线性无关组也必是α
1
,…,α
m
,β的极大线性无关组,从而β可由α
1
,α
2
,…,α
m
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/EFu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
[*]
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
试确定P的取值范围,使得y=x3-3x+p与x轴(1)有一个交点;(2)有两个交点;(3)有三个交点.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设A是m×n矩阵,B是,n×m矩阵,则
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
题设所给变上限定积分中含有参数x,因此令u=2x-t,则du=-dt,[*]
设f(x)在[0,1]连续且非负但不恒等于零,记则它们的大小关系为
设f(u)为奇函数,且具有一阶连续导数,S是由锥面两球面x2+y2+z2=1与x2+y2+z2=2(z>0)所围立体的全表面,向外.求
随机试题
下列不属于美国四大公共政策研究机构的是()
在我国现阶段的所有制结构中,国有经济对经济发展起主导作用。这主要体现在()
诊断“肠道寄生虫病”编码时,主导词应为
A、胸部后前位B、胸部右侧位C、深呼气后屏气后前位D、左侧位E、前弓位肺尖部病灶摄影体位的补充体位是
资源风险主要指开发项目,如天然气等矿产资源的()及采选方式与原预测结果发生较大偏离,导致项目开采成本增高,产量降低或者开采期缩短的可能性。
施工企业因下列情形提起行政诉讼,人民法院不予受理的是()。
利用统计调查窃取国家秘密,侵犯的客体是国家主权。()
经济周期波动风险是指证券市场行情周期性变动而引起的风险。()
毛泽东主席的《浪淘沙·北戴河》一词中“魏武挥鞭”,“魏武”指的是()。
Access中,可与Like一起使用,代表0个或者多个字符的通配符是()。
最新回复
(
0
)