首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: A的特征值和特征向量;
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: A的特征值和特征向量;
admin
2018-11-11
105
问题
设向量α=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
都是非零向量,且满足条件α
T
β=0,记n阶矩阵A=αβ
T
,求:
A的特征值和特征向量;
选项
答案
方法一 利用(1)A
2
=0.设A的任一特征值为λ,对应于λ的特征向量为ξ,则Aξ=λξ,两端左边乘A,得A
2
ξ=λAξ=λ
2
ξ. 因A
2
=O,所以λ
2
ξ=0,ξ≠0,故λ=0即矩阵A的全部特征值为0. 方法二 直接用特征值的定义. Aξ=αβ
T
ξ=λξ, ① 由①式,若β
T
ξ=0,则λξ=0,ξ≠0,得λ=0; 若β
T
ξ≠0,①式两端左边乘β
T
,得β
T
αβ
T
ξ=(β
T
α)β
T
ξ=0.(β
T
ξ)=λβ
T
ξ,得λ=0,故A的全部特征值为0. 方法三 利用特征方程|λE一A|=0. [*] 因右端行列式中每一列的第2子列均成比例,故将行列式拆成2
n
个行列式时,凡取两列或两列以上第2子列的行列式均为零,不为零的行列式只有n+1个,它们是 [*] 因[*]故|λE一A|=λ
n
=0,故λ=0是A的全部特征值. 方程组Ax=0的非零解即为A的特征向量.不妨设a
1
≠0,b
1
≠0,有 [*] 则A的对应于特征值0的特征向量为[*]k
1
,…,k
n-1
为不全为零的常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/EJj4777K
0
考研数学二
相关试题推荐
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
已知向量组α1,α2……αs(s≥2)线性无关,设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1β2……βs的线性相关性.
设若A=αTβ,则An=_________.
设y=f(x)是满足微分方程y”一y’一esinx=0的解,且f’(x0)=0,则f(x)在()
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A;
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵B.使得A(α1,α2,α3)=(α1,α2,α3)B;
计算其中Ω为z≥x2+y2与x2+y2+z2≤2所围成的区域.
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)c=0()
计算其中∑为下半球面的上侧,a为大于零的常数.
设P(x)在[0,+∞)连续且为负值,y=y(x)在[0,+∞)连续,在(0,+∞)满足y’+P(x)y>0且y(0)≥0,求证:y(x)在[0,+∞)单调增加.
随机试题
与报纸产量有关的统计指标的基本单位是【】
简述国家和国际组织成为国际经济关系主体的过程。
意志行动过程可分为_______、_______两个阶段。
地方各级人大主要以召开会议的方式进行工作。会议每年至少举行一次,经下列选项中的哪一法定数额代表的提议可以临时召集本级人大会议?()
背景资料(二):下图所示为梁的结构施工图,请据图回答下列问题。该梁为框架梁,编号为7,共3跨。()
参加房地产经纪人资格全部4个科目考试的人员,必须在()考试年度内通过应试科目,才视为考试通过。
1994年提出的房改的内容可以概括为“三改四建”。下列对其表述有误的是()。
某工程双代号网络计划如下图所示,图中已标出各项工作的最早开始时间和最迟开始时间,该计划表明()。
连杆机构按各构件相对运动的性质不同,可分为()。
明治维新:睦仁天皇
最新回复
(
0
)