首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: A的特征值和特征向量;
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求: A的特征值和特征向量;
admin
2018-11-11
94
问题
设向量α=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
都是非零向量,且满足条件α
T
β=0,记n阶矩阵A=αβ
T
,求:
A的特征值和特征向量;
选项
答案
方法一 利用(1)A
2
=0.设A的任一特征值为λ,对应于λ的特征向量为ξ,则Aξ=λξ,两端左边乘A,得A
2
ξ=λAξ=λ
2
ξ. 因A
2
=O,所以λ
2
ξ=0,ξ≠0,故λ=0即矩阵A的全部特征值为0. 方法二 直接用特征值的定义. Aξ=αβ
T
ξ=λξ, ① 由①式,若β
T
ξ=0,则λξ=0,ξ≠0,得λ=0; 若β
T
ξ≠0,①式两端左边乘β
T
,得β
T
αβ
T
ξ=(β
T
α)β
T
ξ=0.(β
T
ξ)=λβ
T
ξ,得λ=0,故A的全部特征值为0. 方法三 利用特征方程|λE一A|=0. [*] 因右端行列式中每一列的第2子列均成比例,故将行列式拆成2
n
个行列式时,凡取两列或两列以上第2子列的行列式均为零,不为零的行列式只有n+1个,它们是 [*] 因[*]故|λE一A|=λ
n
=0,故λ=0是A的全部特征值. 方程组Ax=0的非零解即为A的特征向量.不妨设a
1
≠0,b
1
≠0,有 [*] 则A的对应于特征值0的特征向量为[*]k
1
,…,k
n-1
为不全为零的常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/EJj4777K
0
考研数学二
相关试题推荐
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)T+(1,2,一1)T,k为任意常数.令矩阵B=(α1,α2,α3,b+α3),证明方程组Bx=α1一α2有无穷多组解,并求其通
设f(x,y)连续,改变下列二次积分的积分次序:
求过原点且与两条直线都平行的平面方程.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵B.使得A(α1,α2,α3)=(α1,α2,α3)B;
设矩阵其行列式|A|=一1,又A的伴随矩阵A*有一个特征值λ0,A*的属于λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c和λ0的值.
n元实二次型正定的充分必要条件是()
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1}.
(2004年)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比
随机试题
换发土地证书的内容包含()。
某分部工程双代号网络计划如下图所示,其中关键工作是()
非代理型CM模式的合同价( )。
某旅游商店在店堂告示中标明“售出商品,概不退换”。一游客在导游员的带领下购买该商店的商品,后经有关质量鉴定部门认定为不合格产品,旅游者要求退货。依照《消费者权益保护法》的规定,经营者()。
阅读以下文字,完成以下问题。要说的话已经到了嘴边,可你偏偏想不起来。有人问你上个周末做了什么,你的脑子里却是一片空白。你在担心这些征兆是否暗示你参加社交活动过于频繁,以致消耗了太多的脑细胞。米歇拉.加拉格尔却说,事实并非如此。在你身上所发生
你来负责单位开展的5年工作成果展,你如何组织并保证效果?(广西壮族自治区公务员面试真题)
以人为本是科学发展观的核心。坚持以人为本,是根据历史唯物主义关于人民是历史发展的主体、是推动历史前进的根本力量的基本原理提出来的。早在千百年前。中国古代思想家就提出了“民惟邦本,本固邦宁”、“天地之间,莫贵于人”的民本思想。强调要利民、裕民、惠民。近代西方
[*]
下列有关数据库的描述,正确的是()。
【B1】【B2】
最新回复
(
0
)