首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 设f(x)是区间[0,π/4]上的单调可导函数,且满足 ∫0f(x)f-1(t)dt=∫0xtdt 其中f-1是f的反函数,求f(x).
[2007年] 设f(x)是区间[0,π/4]上的单调可导函数,且满足 ∫0f(x)f-1(t)dt=∫0xtdt 其中f-1是f的反函数,求f(x).
admin
2019-05-10
90
问题
[2007年] 设f(x)是区间[0,π/4]上的单调可导函数,且满足
∫
0
f(x)
f
-1
(t)dt=∫
0
x
t
dt
其中f
-1
是f的反函数,求f(x).
选项
答案
在所给方程两边对x求导,利用f[f
-1
(x)]=x,得到关于.f′的方程,求解此微分方程即可求出f(x). 在所给等式两边对x求导,得到 f
-1
[f(x)]f′(x)=x[*], 即 xf′(x)=x[*]两边积分得到 f(x)=[*]=ln∣sinx+cosx∣+C, ① 其中x∈[0,π/4].在原式中令x=0,得到∫
0
f(0)
f
-1
(t)dt=∫
0
0
t[*]dt=0.因f(x)在区间[0,π/4]上单调、可导,则f
-1
(x)的值域为[0,π/4],单调非负,故f(0)=0,代入式①可得C=0,故f(x)=ln∣cosx+sinx∣—ln(cosx+sinx).
解析
转载请注明原文地址:https://kaotiyun.com/show/ENV4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η(0,1),使得f′(ξ)+f′(η)=0.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设直线y=aχ与抛物线y=χ2所围成的图形面积为S1,它们与直线χ=1所围成的图形面积为S2,且a<1.(1)确定a,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕χ轴旋转一周所得旋转体的体积.
设f(χ)=求f(χ)的极值.
a,b取何值时,方程组有解?
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
二次型f(x1,z2,z3)一z;+ax;+z;一4x1z2—8x1z3—4x2.273经过正交变换化为标准形5y12+by22+4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
已知,求a,b的值.
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P-1AP为对角阵.
设y=f(x)是区间[0,1]上的任一非负连续函数。又设f(x)在区间(0,1)内可导,且f’(x)>,证明(I)中的x0是唯一的。
随机试题
A公司所得税税率25%,采用资产负债表债务法核算。2011年10月A公司以1000万元购入B上市公司的股票,作为短期投资,期末按成本法计价。A公司从2013年1月1日起,执行新准则,并按照新准则的规定,将上述短期投资划分为交易性金融资产,2011年末该股票
放射性核素显像技术的叙述,错误的是
体力劳动强度按劳动强度指数大小分为()级。
《工程质量评估报告》是工程验收中的重要资料,应由( )签署。
固定总价合同适用于在()的情况下采用。
( )是一国对外债权的总和,用于偿还外债和支付进口。
中国证监会有关职能部门应当在发审委会议召开5日前,将会议通知、股票发行申请文件及中国证监会有关职能部门的初审报告送达参会发审委委员。()
根据下面的表格资料回答124-128题下列说法正确的是()
商业智能将企业中现有的数据转化为知识,帮助企业作出明智的业务经营决策,包括数据预处理、建立数据模型、数据分析及数据展现4个阶段;其主要应用的3个关键技术是()。
Ineverycultivatedlanguagetherearetwogreatclassesofwordswhich,takentogether,comprisesthewholevocabulary.First,
最新回复
(
0
)