首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak—1线性表示。
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak—1线性表示。
admin
2018-12-29
32
问题
设向量组a
1
,a
2
,…,a
m
线性相关,且a
1
≠0,证明存在某个向量a
k
(2≤k≤m),使a
k
能由a
1
,a
2
,…,a
k—1
线性表示。
选项
答案
因为向量组a
1
,a
2
,…,a
m
线性相关,由定义知,存在不全为零的数λ
1
,λ
2
,…,λ
m
,使 λ
1
a
1
+λ
2
a
2
+ … +λ
m
a
m
=0。 因λ
1
,λ
2
…,λ
m
不全为零,所以必存在k,使得λ
k
≠0,且λ
k+1
= … =λ
m
=0。 当k=1时,代入上式有λ
1
a
1
=0。又因为a
1
≠0,所以λ
1
=0,与假设矛盾,故k≠1。 当λ
k
≠0且k≥2时,有 a
k
=[*],k≠1, 因此向量a
k
能由a
1
,a
2
,…,a
k—1
线性表示。
解析
转载请注明原文地址:https://kaotiyun.com/show/EPM4777K
0
考研数学一
相关试题推荐
讨论下列函数的连续性并判断间断点的类型:(I)y=(1+x)arctan;(II)y=-x);(Ⅲ)y=(Ⅳ)=f(x)=,x∈(0,2π);(Ⅴ)y=f[g(x)],其中f(x)=
设A是n阶可逆矩阵,满足A2=E,则R(A-E)+R(A+E)=_________.
设α1,α2,α3均为三维向量,则对任意常数K,L,向量组α1+kα3,α2+lα3线性无关是向量α1,α2,α3线性无关的()
已知二维随机变量(X,Y)在区域D={(x,y)|0<x<1,0<y<2}上服从均匀分布,则概率P{X+Y≥1}=________,P{X2<Y}=______.
函数f(x)=在点x0=1处带佩亚诺型余项的四阶泰勒公式为________.
设曲面∑:x2+y2+z2=R2,Ω为∑围成的闭区域,则曲面积分(x2+y2+z2)dS=()
设z=z(x,y)是由方程Ф(cx-az,cy-bz)=0确定的隐函数,其中Ф(u,v)具有连续偏导数,则=______.
位于曲线y=xe-x(0≤x<+∞)下方,x轴上方的无界图形的面积为_______.
已知向量a与单位向量e不共线,另有一个与它们共面的向量p,当向量a、e、p起点相同时,向量p关于向量e与向量a对称,试用向量a和向量e来表示向量P.
设由曲线线y=e-x(x≥0),x轴,y轴和直线x=ξ(ξ>0)所围平面图形绕x轴旋转一周所得立体图形的体积为V(ξ),求使
随机试题
在教师指导下巩固知识、培养各种技能和技巧的教学方法是【】
苯甲酸在何种条件下抑菌作用最好
下列哪项关于发病率的论述是正确的
贷款人应设立独立的责任部门或岗位,负责贷款支付审核。()
《税收征管法》规定,扣缴义务人依法履行代扣、代缴义务时,纳税人不得拒绝。纳税人拒绝的,扣缴义务人应当()。
红红、丹丹、阳阳、珍珍和慧慧是同一家公司的同事,因工作的需要,他们不能同时出席公司举办的新产品发布会,他们的出席情况是:(1)只有红红出席,丹丹、阳阳和珍珍都出席;(2)红红不能出席;(3)如果丹丹不出席,阳阳也不出席;(4)如果阳阳不出席,慧慧也不出席;
张某下午六时多外出买菜,出门时看手表,发现表的时针和分针的夹角为110°,七时前回家时又看手表,发现时针和分针的夹角仍是110°。那么张某外出买菜用了多少分钟()
在面向对象方法中,实现信息隐蔽是依靠
阅读下面的对话,根据其内容写一篇有关该调查的说明文。要求:1.所写短文应与对话相关内容意义相符,涵盖其要点。2.用你自己的语言来表达,可以改写对话中的句子,但不可以照抄原句。注意:词数80词左右。Tina:Whatareyoure
FourWaystoBeHappierIftherewereaDr.Happiness,wouldyourushtogetinlinetoseehim,especiallyifhisprescript
最新回复
(
0
)