首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
admin
2019-04-22
58
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(χ)cosχdχ=∫
0
π
f(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
选项
答案
令F(χ)=∫
0
χ
f(t)sintdt,因为F(0)=F(χ)=0,所以存在χ
1
∈(0,π),使得F′(χ
1
)=0,即f(χ
1
)sinχ
1
=0,又因为sinχ
1
≠0,所以f(χ
1
)=0. 设χ
1
是f(χ)在(0,π)内唯一的零点,则当χ∈(0,π)且χ≠χ
1
时,有sin(χ-χ
1
)f(χ) 恒正或恒负,于是∫
0
π
sin(χ-χ
1
)f(χ)dχ≠0. 而∫
0
π
sin(χ-χ
1
)f(χ)dχ=cosχ
1
∫
0
π
f(χ)sinχdχ-sinχ
1
∫
0
π
f(χ)cosχdχ=0,矛盾, 所以f(χ)在(0,π)内至少有两个零点.不妨设f(χ
1
)=f(χ
2
)=0,χ
1
,χ
2
∈(0,π)且χ
1
<χ
2
, 由罗尔中值定理,存在ξ∈(χ
1
,χ
2
)[*](0,π),使得f′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/EtV4777K
0
考研数学二
相关试题推荐
α=(1,2,3,4),β=[1,1/2,1/3,1/4],A=αTβ,求An(n为正整数).
设A=,若齐次方程组AX=0的任一非零解均可用口线性表示,则a=().
的一个基础解系为
设f(x)是以l为周期的周期函数,则∫a+kla+(k+l)lf(x)dx之值()
曲线y=ex与该曲线经过原点的切线及y轴所围成的平面图形的面积为()
设f(χ)二阶连续可导,且f(0)=f′(0)=0,f〞(0)≠0,设u(χ)为曲线y=f(χ)在点(χ,f(χ))处的切线在z轴上的截距,求.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设二维非零向量α不是二阶方阵A的特征向量.若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
设有微分方程y’-2y=φ(x),其中φ(x)=试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
随机试题
导致弥散性血管内凝血患者出血的主要原因是
有机磷农药中毒时,出现烟碱样症状的表现是()。
A.心脏毒性B.出血性膀胱炎C.肝损伤D.肺纤维化E.腹泻米托蒽醌可引起的主要不良反应()。
建设工程项目进度控制的管理措施涉及( )。
某汽车企业2004年第一季度汽车完成周转量200万吨公里,挂车完成周转量80万吨公里,拖运率为()。[2005年真题]
紧张、焦虑、恐惧等消极情绪出现,对身心健康都是有害无益的,应该尽量压抑这类情绪。()
商洽性文件的主要文种是()
Whereistheman?
Wherehavethefamilydecidedtogoforavacationthissummer?
如果你是一个中等水平的读者,你能够以每分钟300字的速度阅读一本中等水平的书。不过,你必须每天这样坚持下去,否则就无法保持这种水平。【T1】你也不可能以这个速度阅读科学、数学、农业、商业方面的书,或是对你来说内容生疏的书。(Nor…or…)你绝不会以这种速
最新回复
(
0
)