首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是来自X的简单随机样本,试求: 端点θ的最大似然估计量;
假设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是来自X的简单随机样本,试求: 端点θ的最大似然估计量;
admin
2019-01-23
47
问题
假设总体X在区间[0,θ]上服从均匀分布,X
1
,X
2
,…,X
n
是来自X的简单随机样本,试求:
端点θ的最大似然估计量;
选项
答案
记X
(n)
=max{X
1
,X
2
,…,X
n
).由总体X的分布函数F(x)=[*](0≤x≤θ)知,X
(n)
的分布函数为F
(n)
(x)=[*](0≤x≤θ). 总体X的概率密度函数为f(x;θ)=[*] 未知参数θ的似然函数为[*] 由于似然函数L(θ)无驻点,需要直接求L(θ)的最大值点,记X
(n)
=max{X
1
,X
2
,…,X
n
};由于当X
(n)
>θ时,L(θ)=0;当X
(n)
≤θ时,L(θ)随θ减小而增大,所以当[*]=X
(n)
时L(θ)达到最大值,故[*]=X
(n)
就是未知参数θ的最大似然估计量. 现在讨论估计量[*]=X
(n)
的无偏性.为此,首先求[*]=X
(n)
的概率分布.总体X的分布函数为 [*] 由于X
1
,X
2
,…,X
n
独立同分布,则[*]=X
(n)
的分布函数为 F
(n)
(x)=P{X
(n)
≤x}=P{X
1
≤x,…,X
n
≤x} [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/FrM4777K
0
考研数学一
相关试题推荐
设(I)求f(x)以2π为周期的傅氏级数,并指出其和函数S(x);(Ⅱ)求
求的和S.
求引力:(I)在x轴上有一线密度为常数μ,长度为l的细杆,在杆的延长线上离杆右端为口处有一质量为m的质点P,求证:质点与杆间的引力为F=(M为杆的质量).(II)设有以O为心,r为半径,质量为M的均匀圆环,垂直圆面,=b,质点P的质量为m,试导出圆环对
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵.(I)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设f(x)=g(x)=0,f*(x)=(x)=0,且f(x)~f*(x),g(x)~g*(x)(x→a).(I)当x→a时无穷小f(x)与g(x)可比较,不等价(=r≠1,或=∞),求证:f(x)-g(x)~f*(x)-g*(x)(x→a);(II)
设A=已知线性方程组Ax=b存在2个不同的解,(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解.
求与A=可交换的矩阵.
设向量组B:b1…,br能由向量组A:a1,…as线性表示为(b1…br)=(a1…,as)K,其中K为s×r矩阵,且向量组A线性无关证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
设平面薄片所占的区域D由抛物线y=x2及直线y=x所围成,它在(x,y)处的面密度ρ(x,y)=x2y,求此薄片的重心.
求微分方程y2dx+(2xy+y2)dy=0的通解.
随机试题
清人庄仲方在《金文雅序》中所说的“借才异代”是指【】
维持机体稳态的重要调节过程是
无肝脏首过效应生物利用度可达100%的是
某肉鸡场35日龄鸡发病,病鸡表现精神沉郁、羽毛松乱,死亡病鸡的肉眼病变主要有纤维素性心包炎、纤维素性肝周炎和纤维素性气囊炎。使用抗生素治疗后效果良好。该病最可能是
【案例四】背景材料:某公司中标某工程,根据《建设工程施工合同(示范文本)》(GF一1999—0201)与建设单位签订总承包施工合同。按公司成本管理规定,首先进行该项目成本预测(其中:人工费287.4万元,材料费504.4万元,机械使用费
下列各项中,符合城市维护建设税规定的有()。
张老师,女,45岁。喜欢吃各种甜食和巧克力、炸薯条等热量高的食品。平时基本上没有户外运动的习惯。体格测量结果为:身高165cm,体重80kg,腰围90cm,臀围110cm。 请根据上述案例回答以下问题。张老师的BMI是多少?按标准是否正常?
警惕汞污染1953年,日本水俣湾附近发现了一种“怪病”,称为“水俣病”。这种病症最初出现在猫身上,病猫步态不稳,抽搐、麻痹,甚至跳海而死。不久,陆续发现了患这种病症的人。患者步履蹒跚,手足麻痹乃至变形,神经错乱甚至死亡。后来发现,这不是传染病,而
Thetragedycouldhavebeen______ifthecrewhadfollowedsafetyprocedures.
ScoresofuniversityhallsofresidencesandlecturetheatresintheUKwerejudged"atseriousriskofmajorfailureorbreakdo
最新回复
(
0
)