首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2018-08-03
70
问题
设矩阵A=
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
A的特征多项式为 [*] =(λ一2)(λ
2
一8λ+18+3a). (1)若λ=2是f(λ)的二重根,则有(λ
2
一8a+18+3a)|
λ=2
=2
2
—16+18+3a=3a+6=0,解得a=一2. 当a=一2时,A的特征值为2,2,6,矩阵2E—A=[*]的秩为1,故对应于二重特征值2的线性无关特征向量有两个,从而A可相似对角化. (2)若λ=2不是f(λ)的二重根,则λ
2
一8λ+18+3a为完全平方,从而18+3a=16.解得a=[*]. 当a=一[*]时,A的特征值为2,4,4,矩阵 [*] 的秩为2,故A的对应于特征值4的线性无关特征向量只有一个,从而A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Fug4777K
0
考研数学一
相关试题推荐
设函数f(x,y)在D:x2+y2≤1有连续的偏导数,且在L:x2+y2=1上有f(x,y)≡0.证明:f(0,0)=,其中Dr:r2≤x2+y2≤1.
当x>0时,证明:
设f(x)在x0的邻域内四阶可导,且|f(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有其中x’为x关于x0的对称点.
二阶常系数非齐次线性微分方程y"一2y’一3y=(2x+1)e-x的特解形式为().
设α1,α2,…,αt为AX=0的一个基础解系,P不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设二维随机变量(X1,Y1)与(X2,Y2)的联合概率密度分别为求:(Ⅰ)常数K1,K2的值;(Ⅱ)Xi,Yi(i=1,2)的边缘概率密度;(Ⅲ)P{Xi>2Yi}(i=1,2).
已知总体X服从参数为p(0<p<1)的几何分布:P{X=x}=(1一p)x-1p(x=1,2,…),X1,…,Xn是来自总体X的简单随机样本,则未知参数p的矩估计量为____________;最大似然估计量为____________.
二次型f(x1,x2,x3)=5一2x1x2—6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的坐标变换.
设n阶矩阵A=,证明行列式|A|=(n+1)an.
计算行列式|A|=之值.
随机试题
作品的特点在于画面连续性的是()。
有关青春期,以下哪些是正确的
A.周围血中幼稚细胞、原始细胞>0.15%B.周围血中有较多幼稚细胞伴嗜酸、嗜碱性粒细胞增多C.周围血中幼红细胞、幼粒细胞易见,骨髓呈现“干抽”D.周围血中出现较多异型淋巴细胞E.周围血中易见盔形细胞、小球形细胞及破碎红细胞骨髓纤维化可见
正常精子头部呈
消炎利胆片的功能有
证券公司发现或者有合理理由怀疑客户、客户的资产或者其他资产、客户的交易或者试图进行的交易与洗钱、恐怖融资等犯罪活动相关的,不论所涉资金金额或者资产价值的大小,应当向()提交可疑交易报告。
下列关于个人独资企业的说法中,正确的有()。
企业为维持一定经营能力所必须负担的最低成本是()。
请使用【答题】菜单命令或直接用VC6打开考生文件夹下的工程proj3,其中声明的是一个人员信息类,补充编制程序,使其功能完整。在main函数中给出了一组测试数据,此种情况下程序的输出应该是:Zhang20Tsinghua。注意:只能在函数addres
WhydidRockcomeintotheroom?
最新回复
(
0
)