首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
考虑一元函数f(x)的下列4条性质: ①f(x)在[a,b]上连续; ②f(x)在[a,b]上可积; ③f(x))在[a,b]上可导; ④f(x)在[a,b]上存在原函数. 以P=>Q表示由性质P可推出性质Q,则有 ( )
考虑一元函数f(x)的下列4条性质: ①f(x)在[a,b]上连续; ②f(x)在[a,b]上可积; ③f(x))在[a,b]上可导; ④f(x)在[a,b]上存在原函数. 以P=>Q表示由性质P可推出性质Q,则有 ( )
admin
2020-01-15
57
问题
考虑一元函数f(x)的下列4条性质:
①f(x)在[a,b]上连续;
②f(x)在[a,b]上可积;
③f(x))在[a,b]上可导;
④f(x)在[a,b]上存在原函数.
以P=>Q表示由性质P可推出性质Q,则有 ( )
选项
A、①=>②=>③.
B、③=>①=>④.
C、①=>②=>④.
D、④=>①=>③.
答案
B
解析
因可导必连续.连续函数必存在原函数,故B正确.
A是不正确的.虽然由①(连续)可推出②(可积),但由②(可积)推不出③(可导).例如f(x)=|x|在[-1,1]上可积,且∫
-1
1
|x|dx=2∫
0
1
xdx=1,但|x|在x=0处不可导.
C是不正确的.由②(可积)推不出④(存在原函数),例如
在[-1,1]上可积,且
∫
-1
1
f(x)dx=∫
-1
0
(-1)dx+∫
0
1
1dx=-x|
-1
0
+x
0
1
=-1+1=0.
但f(x)在[-1,1]上不存在原函数.因为如果存在原函数F(x),那么只能是F(x)=|x|+C的形式,而此函数在x=0处不可导,在区间[-1,1]上它没有做原函数的“资格”.
D是不正确的.因为由④(存在原函数)推不出①(函数连续).例如:
它存在原函数
可以验证Fˊ(x)=f(x),但f(x)在x=0处并不连续,即存在原函数可以不连续.[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/GHA4777K
0
考研数学二
相关试题推荐
设f(x)=∫0xecostdt,求∫0πf(x)cosxdx=_____.
=__________。
交换积分次序=_______。
若β=(1,3,0)T不能由α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T线性表出,则a=_______.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=_______.
设,且f(u)及g(u)具有二阶连续导数,则=__________。
已知函数f(x)连续,且=1,则f(0)=_________。
已知随机变量X的概率分布为P{X=k}=,k=0,1,2,…,求E(X2)和D(X).
设D={(x,y)|(x一1)2+(y一1)2=2},计算二重积分(x+y)dσ。
微分方程满足初始条件y(1)=1的特解是y=_____________.
随机试题
农业区别于其他产业的本质特征是:
毛发式湿度计的精度一般为()。
航空公司运价,以“C”表示的为()。
阅读材料,并按要求作答。一个小村庄的故事在一片河坡上,早先有过一个美丽的村庄。村子里住着几十户人家,家家都有一两把锋
教师应当尊重学生的(),或者其他侮辱人格尊严的行为,不得侵犯学生合法权益。
A、6B、4C、3D、2D
根据下列资料,回答问题。2012年一季度,中部六省中固定资产投资低于六省平均水平的有:
地图:路线
清代的()是查阅诗文典故的一部辞书。
Whoinvited(邀请)Mr.Smithtosingasong?______askedthesmallwomanwhyshecried.
最新回复
(
0
)