设f(χ)在(-∞,+∞)连续,存在极限f(χ)=A及f(χ)=B.证明: (Ⅰ)设A<B,则对μ∈(A,B),ξ∈(-∞,+∞),使得f(ξ)=μ; (Ⅱ)f(χ)在(-∞,+∞)有界.

admin2016-10-21  52

问题 设f(χ)在(-∞,+∞)连续,存在极限f(χ)=A及f(χ)=B.证明:
    (Ⅰ)设A<B,则对μ∈(A,B),ξ∈(-∞,+∞),使得f(ξ)=μ;
    (Ⅱ)f(χ)在(-∞,+∞)有界.

选项

答案(Ⅰ)由[*]f(χ)=A<μ及极限的不等式性质可知,[*]X1使得f(X1)<μ. 由[*]f(χ)=B>μ可知,[*]X2>X1使得f(X2)>μ.因f(χ)在[X1,X2]连续,f(X1)<μ<f(X2),由连续函数介值定理知[*]ξ∈(X1,X2)[*](-∞,+∞),使得f(ξ)=μ. (Ⅱ)因[*]f(χ)=A,[*]f(χ)=B,由存在极限的函数的局部有界性定理可知,[*]X1使得当χ∈(-∞,X1)时f(χ)有界;[*]X2(>X1)使得当χ∈(X2,+∞)时f(χ)有界.又由有界闭区间上连续函数的有界性定理可知,f(χ)在[X1,X2]上有界.因此f(χ)在(-∞+∞)上有界.

解析
转载请注明原文地址:https://kaotiyun.com/show/GHt4777K
0

随机试题
最新回复(0)