首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,f(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)= (Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x
设A为n阶实对称矩阵,f(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)= (Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x
admin
2014-05-19
74
问题
设A为n阶实对称矩阵,f(A)=n,A
ij
是A=(a
ij
)
n×m
中元素a
ij
(i,j=1,2,…,n)的代数余子式,二次型f(x
1
,x
2
,…,x
n
)=
(Ⅰ)记X=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(x)的矩阵为A
-1
;
(Ⅱ)二次型g(X)=X
T
AX与f(X)的规范形是否相同?说明理由.
选项
答案
(Ⅰ)由题设,[*] 已知A为n阶实对称矩阵,从而上式两边可转置,即 [*] 已知r(A)=n,从而|A|≠0,A可逆,且A
-1
=[*],则由(1)式知 f(x
1
,x
2
,…,x
n
)=x
T
A
-1
X且(A
-1
)
T
=(A
T
)
-1
=A
-1
, 故f(x
1
,x
2
,…,x
n
)=x
T
A
-1
X是f(X)的矩阵表示,且相应矩阵为A
-1
,证毕. (Ⅱ)由于(A
-1
)
T
AA
-1
=(A
T
)
-1
E=A
-1
,则A
-1
与A合同,于是g(X)=X
T
AX与f(X)有相同规范形,得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/GJ34777K
0
考研数学二
相关试题推荐
设二维随机变量(X,Y)的概率密度为(Ⅰ)求P{X>2Y};(Ⅱ)求Z=X+Y的概率密度fZ(z).
(1999年)设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量;若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1,假设两种要素的价格分别为p1和p2,试问:当产量为12时,两要素各投入多少可以使得投入总费用最小?
[2018年]设平面区域D由曲线与直线及y轴围成,计算二重积分
设随机变量X的分布律为P{X=k}=p(1-P)k-1(k=1,2,…),Y在1~k之间等可能取值,求P{Y=3}。
求幂级数的收敛域与和函数。
微分方程y"-2y’=xe2x+3x+2的特解形式为()。
设A,B及A*都是n(n≥3)阶非零矩阵,且ATB=O,则rB等于()。
已知四维列向量α1,α2,α3线性无关,若向量β1(i=1,2,3,4)是非零向量且与向量α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为()。
随机试题
现代意义的财产税始创于()
foreigncurrencyreserves
急性失血时,最先出现的代偿反应是
患儿,10岁。课间活动时,突然两眼凝视,呆立不动,呼之不应,持续约10秒后恢复正常。以往有类似发作。考虑为
甲的丈夫强奸了丙,案发后甲多次找到丙,要求丙将强奸说成通奸,并拿出5000元作为给丙的“改口”补偿,丙未同意。甲便将丙拉到家中,强迫丙按照其事先写好的说明是通奸的材料抄写一份并按上指印。丙仍不同意,甲便一直不允许丙离开,4天后丙才被警察解救。关于甲的行为定
国产水准仪按精度不同划分为()个等级。
提高企业经营安全性的途径有()。
在下列描述中,对有效资本市场涵义的描述不正确的是()。
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好“tCourse”、“tGrade”、“tStudent”三个关联表对象和一个空表“tSinfo”,试按以下要求完成设计:创建一个查询,计算每名学生所选课程的学分总和,并依次显示“
PeopleinthemassadvertisingbusinessandotherswhostudyAmericansocietyhavebeenveryinterestedinthequestion:Whatdo
最新回复
(
0
)