首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)是由方程2y3-2y2+2xy-x2=1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?
设y=y(x)是由方程2y3-2y2+2xy-x2=1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?
admin
2017-05-31
50
问题
设y=y(x)是由方程2y
3
-2y
2
+2xy-x
2
=1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?
选项
答案
(Ⅰ)先用隐函数求导法求出y’(x).将方程两边对x求导得 6y
2
y’-4yy’+2xy’+2y-2x=0, 整理得 y’=[*] ① (Ⅱ)由y’(x)=0及原方程确定驻点.由y’(x)=0得y=x代入原方程得 2x
3
-2x
2
+2xx-x
2
=1, 即 x
3
-x
2
+x
3
-1=0, (x-1)(2x
2
+x+1)=0. 仅有根x=1.当y=x=1时,3y
2
-2y+x≠0.因此求得驻点x=1. (Ⅲ)判定驻点是否是极值点.将①式化为(3y
2
-2y+x)y’=x-y. ② 将②式两边对x在x=1求导,注意y’(1)=0,y(1)=1,得 2y"(1)=1,y"(1)=[*]>0. 故x=1是隐函数y(x)的极小值点.
解析
转载请注明原文地址:https://kaotiyun.com/show/Gut4777K
0
考研数学二
相关试题推荐
求差分方程yt+1-yt=3()t在初始条件y0=5时的特解。
设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex求F(x)所满足的一阶微分方程。
写出由下列条件确定的曲线所满足的微分方程。曲线在点(x,y)处的切线的斜率等于该点横坐标的平方。
如图,C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P分别引平行于x轴和y轴的直线,得两块阴影所示区域A,B,它们有相等的面积,设C的方程是y=x2,C1的方程是y=1/2x2,求曲线C2的方程.
设f(x)为连续函数,证明:∫0πf(sinx)dx=π/2∫0πf(sinx)dx=π∫0π/2f(sinx)dx;证明:∫02πf(|sinx|)dx=4∫0π/2f(sinx)dx;求∫0π2xsinx/(3sin2x+4cos2x)dx.
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
求下列各极限:
求下列极限:
生产某种产品必须投入两种要素,x1与x2分别为两要素的投入量,Q为产出量;若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1.假设两要素的价格分别为声p1和p2,试问当产出量为12时,两要素各投入多少可以使得投入总费用最小?
本题为“1x”型未定式,除可以利用第二类重要极限进行计算或化为指数函数计算外,由于已知数列的表达式,也可将n换为x转化为函数极限进行计算.一般[*]
随机试题
(2013年)关于企业战略管理的说法,错误的是()。
什么是认识过程的第二次飞跃?这次飞跃的重要性和实现条件是什么?
流行性乙型脑炎的传播途径是
在借贷记账法下,末期结账后,一般有余额的账户有()。
保证立法的社会主义方向和性质的重要原则是()。
扩散:是指一种物质的分子分散到另一种物质的分子中,最后均匀分布的现象。扩散现象生动地证明,无论是那一种形态的物质,它们的分子无时无刻不在运动,当它们互相接触的时候,彼此就要扩散到对方当中去。随着温度的升高,分子无规则运动的速度增大,扩散也加快。根据
A、B两地位于同一条河上,B地在A地下游100千米处。甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A地后,都立即按原来路线返航。水速为2米/秒,且两船在静水中的速度相同。如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是(
根据下图所示的记忆实验结果,回答问题。从图中可以看出,刺激呈现时间影响的是
The"sing-song"theorywasputforwardbythegreatDanishlinguist______.
Sinceitistoolatetochangemymindnow,Iam______tocarryingouttheplan.
最新回复
(
0
)