首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明: (Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b] (Ⅱ)f(x)dx≤∫abf(x)g(x)dx.
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明: (Ⅰ)0≤∫axg(t)dt≤(x一a),x∈[a,b] (Ⅱ)f(x)dx≤∫abf(x)g(x)dx.
admin
2021-01-19
52
问题
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:
(Ⅰ)0≤∫
a
x
g(t)dt≤(x一a),x∈[a,b]
(Ⅱ)
f(x)dx≤∫
a
b
f(x)g(x)dx.
选项
答案
(Ⅰ)由0≤g(x)≤1得 0≤∫
0
x
g(t)dt≤∫
0
x
1dt=(x一a) x∈[a,b] (Ⅱ)令F(u)=∫
a
u
f(x)g(x)dx一[*]f(x)dx 只要证明F(b)≥0,显然F(a)=0,只要证明F(u)单调增,又 F’(u)=f(u)g(u)一f(a+∫
a
u
g(t)dt)g(u) =g(u)[f(u)一g(a+∫
a
b
g(t)dt)] 由(Ⅰ)的结论0≤∫
a
x
g(t)dt≤(x一a)知,a≤a+∫
a
x
g(t)dt≤x.即 a≤a+∫
a
u
g(t)dt≤u 又f(x)单调增加,则f(u)≥f(a+∫
a
b
g(t)dt),因此,F’(u)≥0,F(b)≥0. 故 [*]f(x)dx≤∫
a
b
f(x)g(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/H584777K
0
考研数学二
相关试题推荐
2
设函数f(x)在区间(0,+∞)上可导,且fˊ(x)>0,求F(x)的单调区间,并求曲线y=F(x)的凹凸区间及拐点坐标.
[*]
[*]
x=-1
设y=x3+3ax2+3bx+c在x=-1处取最大值,又(0,3)为曲线的拐点,则().
曲线y=∫0xtantdt(0≤x≤)的弧长s=______。
设函数f(μ)在(0,+∞)内具有二阶导数,且z=满足等式=0。验证f’’(μ)+=0;
设F(χ,y)在点(χ0,y0)某邻域有连续的偏导数,F(χ0,y0)=0,则F′y(χ0,y0)≠0是F(χ,y)=0在点(χ0,y0)某邻域能确定一个连续函数y=y(χ),它满足y0=y(χ0),并有连续的导数的_______条件.
设函数y=f(x)具有二阶导数,且f’(x)>0,f’’(x)>0,△x为自变量x在点x0,处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
随机试题
急性胰腺炎血清ɑ淀粉酶活力增高,其高峰是在发病期后
物权是债权产生的前提,只有物权成立于债权之前,物权才优于一般的债权。()
招标人与中标人签订合同后()个工作日内,应当向中标人和未中标的投标人退还投标保证金。
简述税务登记的种类。
某企业于2015年12月31日购入一项固定资产,其原价为300万元,预计使用年限为5年,预计净残值为0.8万元,采用双倍余额递减法计提折旧。2016年度该项固定资产应计提的年折旧额为()万元。
甲、乙、丙、丁兄弟4人继承了一幅古画和一处房产,按照遗嘱兄弟4人的继承份额依次分别为40%、20%、20%、20%。古画由甲保管,房产已登记为4人共有,兄弟4人对共有未作出其他特殊约定。2017年4月1日,甲由于急需资金,擅自将该古画以50万元的
李木在某次考试中,课程甲和课程乙得178分,课程丙和课程丁得171分,课程乙和课程丙得174分,课程丁比课程甲高1分。问李木四门课程中哪门课程得分最高?()
一个统计总体()。
福禄贝尔在幼儿园教育实践中创制的活动玩具被称为()
新建一个窗体,其BorderStyle属性设置为FixedSingle,但运行时却没有最大化和最小化按钮,可能的原因是
最新回复
(
0
)