首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0
admin
2020-03-16
38
问题
已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0,
l
3
:cx+2ay+3b=0.
试证这三条直线交于一点的充分必要条件为a+b+c=0
选项
答案
必要性:设三直线l
1
,l
2
,l
3
交于一点,则线性方程组 [*] 充分性:由a+b+c=0,则|B|=0,故秩r(B)<3. 由于[*] 故秩r(A)=2. 于是,秩r(A)=秩r(B)=2. 因此方程组(1)的唯一解,即三直线l
1
,l
2
,l
3
交于一点.
解析
本题考查点是解析几何与线性代数相应内容的关系问题,即平面上三条不同直线交于一点与对应的线性方程组系数矩阵的秩的关系.
转载请注明原文地址:https://kaotiyun.com/show/H7A4777K
0
考研数学二
相关试题推荐
(09)设(Ⅰ)求满足Aξ2=ξ1,Aξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(94年)求微分方程y"+a2y=sinx的通解,其中常数a>0.
(2006年)设数列{χn}满足0<χ1<π,χn+1=sinχn(n=1,2,…).(Ⅰ)证明χn存在,并求该极限;(Ⅱ)
设有二阶线性微分方程(Ⅰ)作自变量替换x=,把方程变换成y关于t的微分方程.(Ⅱ)求原方程的通解.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求常数a;
求二重积分(x一y)dxdy,其中D={(x,y)|(x一1)2+(y一1)2≤2,y≥x}。
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分[img][/img]
设D={(x,y)|x2+y2≤,x≥0,y≥0,[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分xy[1+x2+y2]dxdy。[img][/img]
[2013年]设Dk是圆域D={(x,y)∣x2+y2≤1)在第k象限的部分,记Ik=(y—x)dxdy(k=1,2,3,4),则().
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵A,使得QTAQ=A。
随机试题
A、Itusesthelatestaviationtechnology.B、Itfliesfasterthanacommercialjet.C、Itisasafermeansoftransportation.D、It
土地革命、武装斗争和农村革命根据地建设是新民主主义革命的三大法宝。
二手车鉴定评估的主要任务是_______。
对左侧精索静脉描述正确的是
具有调节肢体运动和眼睑开合功能的是
可口可乐和百事可乐是印度外资的最大来源,也为当地创造了税收和就业。但是印度科学和环境中心在2006年8月初公布的一份调查报告称,可口可乐公司和百事可乐公司在印度生产销售的部分软饮料含有3到5种杀虫剂成分,含量远远超过规定标准。面对这一问题,印度政府如果不采
以下省份中与河南相毗邻的是()。
从天然气或原油中获取的燃料气体,可以称为:
群体,通常指的是相对于个体的各种社会成员的聚合,实际上就是一种人的集合体,可分为正式群体、非正式群体和准群体。准群体是指没有组织结构,人与人之间有某种联系,有一定程度的共同关注点,有可能在某些时候形成集团,但目前还没有组织起来的人群。以下属于准群体的是(
Genetherapyandgene-baseddrugsaretwowayswecouldbenefitfromourgrowingmasteryofgeneticscience.Buttherewillbeo
最新回复
(
0
)