首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f"’(ξ)=3.
设函数f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f"’(ξ)=3.
admin
2019-08-01
75
问题
设函数f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f"’(ξ)=3.
选项
答案
由泰勒中值定理可知 f(x)=f(0)+f’(0)x+[*]f"’(η)x
3
其中η介于0与x之间,x∈[一1,1] 分别令x=一1和x=1,并结合已知条件得 0=f(一1)=f(0)+[*]f"’(η
1
),一1<η
1
<0 1=f(1)=f(0)+[*]f"’(η
2
), 0<η
2
<1 两式相减可得 f"’(η
1
)+f"’(η
2
)=6 由f"’(x)的连续性,f"’(x)在闭区间[η
1
,η
2
]上有最大值和最小值,设它们分别为M和m,则有 m≤[*][f"’(η
1
)+f"’(η
2
)]≤M 再由连续函数的介值定理知,至少存在一点ξ∈[η
1
,η
2
][*](一1,1) 使 f"’(ξ)=[*][f"’(η
1
)+f"’(η
2
)]=3.
解析
转载请注明原文地址:https://kaotiyun.com/show/HDN4777K
0
考研数学二
相关试题推荐
设f(x)在x=2处连续,且,则曲线y=f(x)在(2,f(2))处的切线方程为__________.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
函数f(x)=的连续区间是_________.
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
设f(x)=又a≠0,问a为何值时存在.
积分∫aa+2πcosxln(2+cosx)dx的值
将f(x,y)dxdy化为累次积分,其中D为x2+y2≤2ax与x2+y2≤2ay的公共部分(a>0).
已知(2,1,1,1)T,(2,1,a,a)T,(3,2,1,a)T,(4,3,2,1)T线性相关,并且a≠1,求a.
(2005年试题,一)
(1998年试题,六)计算积分
随机试题
《汉书》是我国第一部断代史,记事年代起自高祖元年(前206),止于王莽地皇四年(23)。其体例,基本继承《史记》,只是改“书”为“志”,又取消“世家”并人“传”。全书一百篇,包括_________、__________、__________、_______
关于骨产道的描述正确的是
菲德罗河是一条依次流经甲乙丙丁四国的多国河流。1966年,甲乙丙丁四国就该河流的航行事项缔结条约,规定缔约国船舶可以在四国境内的该河流中通航。2005年底,甲国新当选的政府宣布:因乙国政府未能按照条约的规定按时维修其境内航道标志,所以甲国不再受上述条约的拘
“信息存储数字化和存储相对集中”有利于()。
【2012年】下列有关内部控制的说法中,错误的是()。
甲家的承包地被乙家的承包地所包围,在承包时,有一条小路通往甲家的承包地,甲为了拓宽道路,与乙签订了一份协议,拓宽道路一米,甲一次性支付乙5000元。甲通过该合同所取得的权利为何种权利?()
下述情况中属于手段不能犯未遂的有
物质运动的存在形式是()
AirlineTravelInmostcases,thecompanywillmakeairtravelarrangements.Bepreparedtochargeyourticket(usingacredi
ItisbynomeanseasyforanalientoavoiddoinganythingimproperinanIslamiccountry.
最新回复
(
0
)