首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
美国哈佛大学心理学家加德纳提出的“多元智能理论”认为,人的智能是多元的,每个人都在不同程度上拥有着9种基本智能,只不过不同个体的优势智能是存在差别的。 赵元任是中华人民共和国成立前清华大学国学大师之一,他精通多种国内方言和八九种外语。在巴黎和柏林的
美国哈佛大学心理学家加德纳提出的“多元智能理论”认为,人的智能是多元的,每个人都在不同程度上拥有着9种基本智能,只不过不同个体的优势智能是存在差别的。 赵元任是中华人民共和国成立前清华大学国学大师之一,他精通多种国内方言和八九种外语。在巴黎和柏林的
admin
2020-01-13
34
问题
美国哈佛大学心理学家加德纳提出的“多元智能理论”认为,人的智能是多元的,每个人都在不同程度上拥有着9种基本智能,只不过不同个体的优势智能是存在差别的。
赵元任是中华人民共和国成立前清华大学国学大师之一,他精通多种国内方言和八九种外语。在巴黎和柏林的街头,他能够分别用地道的法语和德语与当地老百姓拉家常,使别人误以为他是本地的常住居民。在国内,每到一个地方,赵元任甚至可以用当地方言与人们随意交谈。
周舟是湖北武汉的一个智力有障碍的少年,在大多数人面前,他都显得说话木讷、反应迟钝、表情呆滞。在父母、老师的倾心教育、培养和影响下,周舟在乐团指挥方面显示了自己的才能,多次在盛大的场合指挥交响乐团完成表演,其指挥才能得到了观众的一致认可。
自20世纪80年代开始,中国科技大学就在全国招收少年大学生,这些少年大学生都是数理化。生等理科学生,大多获得过全国奥赛的最高奖励,或者在理科的学习中拥有着他人难以企及的天赋。湖南省的谢彦波同学,在20世纪80年代就以优异成绩考入了中国科大的少年班。
鲁冠(化名)目前已经成为拥有数亿人民币产业的著名商人。小时候的他并不聪明,学习成绩较差,小学毕业就走入社会。除了勤劳和精明之外,鲁冠的一个重要特点就是善于组织和管理,善于观察和了解周围人的性格、爱好、行为方式等,善于调动企业每个人的积极性和创造性,从而使他的团队发挥着最大的力量。他所管理的企业和公司很快取得了成功,他本人也成了有足够影响力的浙商。
谈谈多元智能理论对教育教学工作的借鉴作用。
选项
答案
①树立正确的学生观,关注学生的全面和谐发展与个性发展,承认学生智能的差异性。 ②正确评价学生,不能因为学生在某方面的智能稍差或很差,就认为学生是差生。 ③发现、引导、培养学生的优势智能。 ④针对不同的学生,教师可以灵活采用多元化的教学方法。 ⑤教师要发展自己的优势智能(个性、特长),形成自己独特的教育风格和教学艺术。
解析
转载请注明原文地址:https://kaotiyun.com/show/Hdcq777K
本试题收录于:
教育理论综合知识题库教师公开招聘分类
0
教育理论综合知识
教师公开招聘
相关试题推荐
前苏联著名教育学家______的论著被誉为“活的教育学”和“学校生活的百科全书”。
1985年《中共中央关于教育体制改革的决定》中指出,这次改革的根本目的是______,______,______。
“男孩摔倒,从来不哭”是家长、教师等对男孩自我情绪控制发展的()
教师在用语言指导游戏时,口气应十分肯定。()
最近发展区
基础教育课程改革提出的三级课程是()
1929年,美国心理学家格塞尔进行了“双生子爬梯实验”,实验结果说明在儿童心理发展过程中()作用显著。
在条件容许的情况下,幼儿园可提前教授小学教育内容。()
随机试题
《学记》提出“教也者,长善而救其失者也”,这句话体现的德育原则是()
物流装卸搬运作业的原则之一是集装单元化原则,即将零放物资归整为统一格式的()单元。
AB型血的红细胞膜上含有
下列关于参与式社会评价方法的说法,正确的是()。
大规模的石灰华阶地以()最典型。
据报载.著名物理学家、英国剑桥大学教授斯蒂芬.霍金宣布他已放弃对“万有理论”(TheoryofEverything)的追求。过去他认为人们很快就能找到一个至少能在原则上描述、预测宇宙中所有事物的终极“万有理论”,而现在他认为,人们永远都获得不了这样的理
TheillnessfromwhichMaryissufferinghasnowbeen________ashepatitis(肝火).
(1)WhenIwasvisitingShanghai,Ilearnedtoavoidacertainalleyonmywalktotheundergroundsystem.Italwayssmelledinc
Welived(11)byanearbylakeandIwouldsometimesgotheretohide.MyparentswereneverhomeanywayandIdidnotliketo
【B1】【B11】
最新回复
(
0
)