首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
下面是人教版高中数学必修5的一节内容,请据此回答下面的问题。 1.1.1 正弦定理 探究 我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。我们是否能得到这个边、角关系准确量化的表示呢? 在△ABC中,如果已知∠A所对的边BC长为a,∠B所对
下面是人教版高中数学必修5的一节内容,请据此回答下面的问题。 1.1.1 正弦定理 探究 我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。我们是否能得到这个边、角关系准确量化的表示呢? 在△ABC中,如果已知∠A所对的边BC长为a,∠B所对
admin
2019-06-10
28
问题
下面是人教版高中数学必修5的一节内容,请据此回答下面的问题。
1.1.1 正弦定理
探究
我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。我们是否能得到这个边、角关系准确量化的表示呢?
在△ABC中,如果已知∠A所对的边BC长为a,∠B所对的边AC长为b,∠C所对的边AB长为c,我们研究∠A,∠B,∠C,a,B,c之间有怎样的数量关系。
由于我们不容易直接得到一般三角形中边和角的关系,所以,我们先考虑直角三角形这种特殊的情形。
如图1.1-1,在Rt△ABC中,∠C是最大的角,所对的斜边c是最大的边,要考虑边长之间的数量关系,就涉及锐角三角函数。根据正弦函数的定义,
那么对于一般的三角形,以上关系式是否仍然成立呢?
如图1.1-2,当△ABC是锐角三角形时,设边AB上的高是CD,根据三角函数的定义
CD=ainB,
CD=bsinA,
所以
asinB=bsinA,
得到
同理,在△ABC中,
当△ABC是钝角三角形时,以上等式仍然成立吗?是否可以用其他方法证明正弦定理?
从上面的讨论和探究,我们得到下面的定理。
正弦定理(law of sines)在一个三角形中,各边和它所对角的正弦的比相等,即
正弦定理指出了任意三角形中三条边与对应角的正弦之间的一个关系式。由正弦函数在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。
一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫作三角形的元素。已知三角形的几个元素求其他元素的过程叫作解三角形(solving triangles)。
问题:
在讲解完正弦定理的证明之后,设计一个教学片段进行小结和内容上的提升。
选项
答案
师:我们刚才给出的就是正弦定理的证明。正弦定理是三角形边角关系的量化表示,它对所有的三角形,不管是直角三角形、锐角三角形还是钝角三角形都适用。大家想想,我们在证明正弦定理的过程中,为什么先证明它在直角三角形中成立,然后再证明在一般的三角形中也成立呢,其中用了什么数学思想呢?大家想想。 生1:因为直角三角形比较特殊…… 生2:因为在直角三角形中证明.比较简单…… 生3:因为先证明在直角三角形中成立,证得的这个结论在后边证明在一般三角形是否成立时用到了…… 师:大家说的都正确。正弦定理在直角三角形中很容易就证明了,用的是锐角三角函数的定义。而证明它在一般三角形中也成立时,是将锐角三角形和钝角三角形转化到直角三角形中来证明的。这里体现的数学思想就是从特殊到一般的归纳推理思想。 师:大家想想,利用正弦定理,我们可以解决一些怎样的解三角形问题呢? 生4:已知两角一边…… 生5:已知两边一角…… 师:看来大家掌握得不错,我再总结一下。如果已知三角形的两角和一边,就可以根据三角形内角和定理求出另外一个角,进而由正弦定理计算出另外两边。那么,如果已知三角形的两边及其中一边的对角,根据正弦定理,可以计算出另一边的对角的正弦值。 师:我刚才说的是计算出另外一边的对角的正弦值,而不是直接计算出另外一边的对角。大家知道为什么这么说吗?这个问题留作一个思考题,下节课为大家解答。
解析
转载请注明原文地址:https://kaotiyun.com/show/Hgtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
阅读材料,按要求完成任务。下面是高中《政治生活》“人民代表大会:国家权力机关”的教材内容。要求:请根据教材内容,从人大代表的角度出发、就中小学或社区的实际问题,设计一个探究活动的主题及实施方案。
阅读下列材料,按要求作答。材料:下列是节选教材中“市场资源配置”的部分内容。没有规矩不成方圆,只有具备公平、公正的市场秩序,市场才能合理配置资源。良好的市场秩序依赖市场规则来维护。市场规则以法律法规、行业规范、市场道德规范等形式,
某老师是一名高中思想政治教师,该老师无论讲授什么内容均采用温故知新导入的方式,该老师的授课违背了思想政治课课堂导入的()。
城乡一体化有利于创造经济的最大增长空间,拉动农牧区居民的消费需求和投资要求,避免“农村病”和“城市病”,保障经济社会的可持续发展。由此可见,推动城乡发展一体化是()。①我国有效扩大内需的根本方略②提高生产力和综合国力的战略支撑③解决“三农”问题的
《义务教育数学课程标准(2011年版)》对“一元二次方程”的一条要求为:理解配方法,能用配方法、公式法、因式分解法解数学系数的一元二次方程.针对上述要求,完成下列任务.针对求解一元二次方程,请设计若干题目,包括例题3~5个,练习题2~3个,帮助学生理解
已知向量a,b,满足|a|=|b|=1,且|a—kb|=|ka+b|,其中k>0。(1)试用k表示a.b,并求出a.b的最大值及此时a与b的夹角θ的值;(2)当a.b取得最大值时,求实数λ,使|a+λb|的值最小,并对这一结论作出几何解
下列选项中不属于《义务教育数学课程标准(2011年版)》中“统计与概率”领域学习内容的是()。
袋中有5个黑球,3个白球,大小相同,一次随机地摸出4个球,其中恰有3个白球的概率为()。
若M、N均为n阶矩阵,则必有()。
数列极限=()。
随机试题
慢性腰肌劳损平素应:肩周炎平素应:
A.WHOB.OTCC.GMPD.GSPE.FDA药品经营质量管理规范的英文缩写为
某泵站工程,业主与总承包商、监理单位分别签订了施工合同、监理合同。总承包商经业主同意将土方开挖、设备安装与防渗工程分别分包给专业性公司,并签订了分包合同。 施工合同中说明:建设工期278天,2004.年9月1日开工,工程造价4357万元。
某城市轨道交通工程项目,在施工过程中,项目经理部对施工阶段的质量控制措施摘录如下:(1)单位工程、分部工程和分项工程开工前,施工负责人向分包方全体人员进行书面技术交底。(2)项目经理对监理工程师提出的设计变更要求在执行前向执行人员进行书面交
根据《水利水电工程标准施工招标资格预审文件》,必须引用的章节有()。
从所给的四个选项中,选择最合适的—个填入问号处,使之呈现—定的规律性。()
下列关于经济增长与经济发展关系的说法,正确的有()。
下列各句中,没有语病的一句是()。
如果驾驶员严格遵守操作规范,并且轮船在起航前经过严格的例行检查,那么轮船就不会失事,除非出现如飓风、海啸等特殊意外。据悉,一艘“光明号”轮船在黄沙岛附近失事。如果上述论断为真,则下列哪项一定为真?()
WAN
最新回复
(
0
)