首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Aχ=β通解为( )
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Aχ=β通解为( )
admin
2017-03-08
60
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
1
,α
2
线性无关,若α
1
+2α
2
-α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+2α
4
=β,k
1
,k
2
为任意常数,那么Aχ=β通解为( )
选项
A、
B、
C、
D、
答案
B
解析
由α
1
+2α
2
-α
3
=β知
即γ
1
=(1,2,-1,0)
T
是Aχ=β的解.同理γ
2
=(1,1,1,1)
T
,γ
3
(2,3,1,2)
T
也均是Aχ=B的解,那么
η
1
=γ
1
-γ
2
=(0,1,-2,-1)
T
,
η
2
=γ
3
-γ
2
=(1,2,0,1)
T
是导出组Aχ=0的解,并且它们线性无关.于是Aχ=0至少有两个线性无关的解向量,有n-r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,有r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2.所以必有r(A)=2,从而n-r(A)=2,因此η
1
,η
2
就是Aχ=0的基础解系,根据解的结构,所以应选B.
转载请注明原文地址:https://kaotiyun.com/show/Iju4777K
0
考研数学一
相关试题推荐
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
求幂级数x2n的收敛域及函数.
幂级数x2n-1的收敛半径R=___________.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
A、发散B、条件收敛C、绝对收敛D、收敛性与λ有关C
将函数f(x)=展开成x-1的幂级数,并指出其收敛区间.
已知4阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为4维列向量,其a2,a3,a4线性无关,a1=2a1-a3,如果β=a1+a2+a3+a4,求线性方程组Ax=β的通解.
随机试题
骨盆测量数值低于正常值的是
除感受"疟邪"外,疟疾的诱发因素,以下列哪项为最多()
当人民法院在立案之日起的5日内将起诉状副本发送被告,被告在收到诉状副本之日起( )日内提出答辩状,上交人民法院。
根据《证券发行上市保荐业务管理办法》,保荐代表人出现相关情形的,中国证监会可撤销其保荐代表人资格;情节严重的,对其采取证券市场禁人的措施。下列属于上述相关情形的有()。[2018年5月真题]Ⅰ.保荐代表人的配偶持有发行人的股份Ⅱ.因
下面哪一种类型的存款免缴储蓄存款利息所得税?()
【2016年河北张家13】国家采取优惠措施鼓励和扶持学校在不影响正常教育教学的前提下,开展勤工俭学的社会服务,但不提倡办校办产业。()
对国家和社会治理而言,我们要正确认识法治和德治的地位()
OntheheelsofElNino,itsopposite,LaNinamaysoonarrive.InaWeeklyUpdate,scientistsattheNOAAClimatePredictionCe
______是面向对象程序设计中程序运行的最基本实体。
Agoodbookmaydrawourattentionsocompletelythatweforgetoursurroundingsandevenouridentityforthetimebeing.
最新回复
(
0
)