首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(I)又已知齐次线性方程组(Ⅱ)的基础解系为ξ1=(2,一1,a,1)T,ξ2=(一1,0,4,a+6)T,试问当a为何值时,方程组(I)和(Ⅱ)有非零公共解?并求出全部非零公共解.
已知齐次线性方程组(I)又已知齐次线性方程组(Ⅱ)的基础解系为ξ1=(2,一1,a,1)T,ξ2=(一1,0,4,a+6)T,试问当a为何值时,方程组(I)和(Ⅱ)有非零公共解?并求出全部非零公共解.
admin
2016-01-11
63
问题
已知齐次线性方程组(I)
又已知齐次线性方程组(Ⅱ)的基础解系为ξ
1
=(2,一1,a,1)
T
,ξ
2
=(一1,0,4,a+6)
T
,试问当a为何值时,方程组(I)和(Ⅱ)有非零公共解?并求出全部非零公共解.
选项
答案
依题意,齐次线性方程组(Ⅱ)的通解为x=k
1
ξ
1
+k
2
ξ
2
=(2k
1
一k
2
,一k
1
,ak
1
+4k
2
,k
1
+(a+6)k
2
)
T
,k
1
,k
2
为任意常数,将其代入方程组(I)中,得[*]方程组(I)、(Ⅱ)有公共的非零解的充分必要条件是方程组(*)有非零解. 于是有[*] 当a=1时,k
2
=0,当k
1
≠0,则x=k
1
ξ
1
一定是方程组(I)、(Ⅱ)的非零解,即x=k
1
(2,一1,1,1)
T
,其中k
1
为不为零的任意常数.当a=一9时,方程组(*)的系数矩阵的秩为1,方程组(*)有非零解[*],这时方程组(I),(Ⅱ)有公共解[*]
解析
本题考查两个齐次线性方程组求非零公共解的问题.
转载请注明原文地址:https://kaotiyun.com/show/Iq34777K
0
考研数学二
相关试题推荐
设矩阵A、B满足关系式AB=A+2B,其中,求B.
某人接连不断、独立地对同一目标射击,直到击中为止,以X表示命中时已射击的次数.假设他共进行了10轮这样的射击,各轮射击的次数分别为1,2,3,4,4,5,3,3,2,3,试求此人命中率P的矩估计和最大似然估计.
设平面区域D:1<x2+y2≤4,f(x,y)是区域D上的连续函数,则等于().
方程的通解为___________.
设相似.求一个可逆矩阵P,使得P-1AP=B;
设幂级数an(x+1)n在x=4处条件收敛,在x=-6处发散,则幂级数的收敛域为________.
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0.证明:方程x[f(x)]2+f’(x)∫0xtf(t)dt=0在(0,1)内至少有两个不同的实根.
设3阶方阵Aα(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2都是3维列向量,且|A|=3,|B|=4,则|5A-2B|=________.
随机试题
人的本质
A.鞍状子宫B.始基子宫C.幼稚子宫D.纵膈子宫E.处女膜闭锁月经量极少,甚至无月经的是
A.干扰细菌蛋白质合成B.抑制细菌核酸代谢C.破坏细菌细胞膜结构D.抑制细菌细胞壁黏肽合成E.抑制细菌DNA螺旋酶青霉素G抗菌作用机制
A.周围神经炎B.听神经损害C.视神经炎D.胃肠功能障碍E.肝脏损害乙胺丁醇的主要不良反应是
下列各项中,()属于财政实现资源配置职能的手段。
甲企业销售商品一批,收到价款200万元,该批商品成本150万元,已提存货跌价准备30万元,结转销售成本时应计入主营业务成本的金额为()万元。
二胡演奏家胡某,在其晚年的演奏表演中,并没有像其青年时代那样严格遵守曲目的节律,而是融入了其毕生演奏形成的精微而细致的体验。最近,市面上出现了一部她演奏的作品,经其粉丝倾听鉴别,发现此作品与其早年演奏的一样,严格遵守曲目的节律。因此断定此作品是其早年的作品
根据下表,回答86-90题。世界部分城市气候状况注:第6、7、9、10、11、12列中温度、降水和日照指标之后的数字表示特定的月份。表中海拔高度位居第三的城市,其最湿月平均降水量约占全年平均降水量的:
Yougotaninvitationtotakepartinaparty.Writeadecliningletterwhichshouldinclude:1)thepurposeofwritingthis
WhatisLearnItSystems?
最新回复
(
0
)