首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). 问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). 问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
admin
2018-08-03
90
问题
设4元齐次线性方程组(Ⅰ)为
,又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(一1,2,2,1).
问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
有非零公共解. 将(Ⅱ)的通解代入方程组(Ⅰ),则有 [*] 解得k
1
=一k
2
,当k
1
=一k
2
≠0时,则向量 k
1
(0,1,1,0)+k
2
(一1,2,2,1)=k
2
[(0,一1,一1,0)+(一1,2,2,1)]=k
2
(一1,1,1,1)满足方程组(Ⅰ)(显然是(Ⅱ)的解),故方程组(Ⅰ)、(Ⅱ)有非零公共解,所有非零公共解是k(一1,1,1,1)(k是不为0的任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/Iug4777K
0
考研数学一
相关试题推荐
设A,B是两个随机事件,且P(A)=0.4,P(B)=0.5,P(A|B)==___________.
设A=,方程组AX=β有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设A=相似于对角阵.求:(1)a及可逆阵P,使得P-1AP=为对角阵;(2)A100.
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(I)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0→A(β1,β2,…,βn)=O→ABT=O→BAT=O.→α1,α2,…,αn为BY=O的一组解,而
设A为三阶实对称矩阵,α1=(a,一a,1)T是方程组AX=0的解,α2=(a,1,1—a)T是方程组(A+E)X=0的解,则a=___________.
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(II)V=|X—Y|的概率密度fV(v)。
已知向量组有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi-x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度:(Ⅰ)D={(x,y)|y>0},并确定函数u(x,y)的表达式:(Ⅱ)D={(x,y)|x2+y2>0}.
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个规范正交基.
已知ξ=的特征向量,求a,b的值,并证明A的任一特征向量均能由ξ线性表出.
随机试题
若正常成人的血铅含量X近似服从对数正态分布,拟用300名正常人血铅值确定99%参考值范围,最好采用公式以下哪种计算(其中Y=logX)
持续性枕后位用胎头吸引器助产时,一般应将胎头向前多少度方可以枕前位娩出
环境保护行政主管部门应当自收到环境保护设施竣工验收申请之日起()日内,完成验收。
已知某项目投资现金流量表如下表所示,则该项目静态投资回收期为()年。
单侧壁导坑法,侧壁导坑宽度一般不宜超过()倍洞宽。
2017年4月,甲公司进过必要的内部批准程序,诀定公开发行公司债券,并向国务院授权的部门报送有关文件,报送文件中涉及有关公并发行公司债券并上市的方案点如下:(1)截止到2016年12月31日,甲公司经过审计后的财务会计资料显示:注册资本为5000万元,资
以下有关教师职业道德的说法正确的是()。
下列属于刑事强制措施的是()。
由火想到热,由久旱逢甘露想到丰收,由骄兵想到必败,这些联想属()
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2,则当a=__________,b=____________时,统计量X服从X2分布,其自由度为_____________.
最新回复
(
0
)