首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). 问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). 问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
admin
2018-08-03
64
问题
设4元齐次线性方程组(Ⅰ)为
,又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(一1,2,2,1).
问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
有非零公共解. 将(Ⅱ)的通解代入方程组(Ⅰ),则有 [*] 解得k
1
=一k
2
,当k
1
=一k
2
≠0时,则向量 k
1
(0,1,1,0)+k
2
(一1,2,2,1)=k
2
[(0,一1,一1,0)+(一1,2,2,1)]=k
2
(一1,1,1,1)满足方程组(Ⅰ)(显然是(Ⅱ)的解),故方程组(Ⅰ)、(Ⅱ)有非零公共解,所有非零公共解是k(一1,1,1,1)(k是不为0的任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/Iug4777K
0
考研数学一
相关试题推荐
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设A为n阶矩阵,k为常数,则(kA)*等于().
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=___________.
设A是n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
设随机变量X服从参数λ=的指数分布,令Y=min(X,2),求随机变量Y的分布函数F(y).
判断3元二次型f=+4x1x2-4x2x3的正定性.
求正交变换化二次型一2x1x2+2x1x3—2x2x3为标准形,并写出所用正交变换.
已知A=是n阶矩阵,求A的特征值、特征向量并求可逆矩阵P使P-1AP=A.
随机试题
A.由纤维组织及内皮细胞修复B.由周围的腺上皮细胞修复C.由肉芽组织及周围腺上皮细胞修复D.由周围的鳞状上皮细胞修复胃溃疡愈合
可摘局部义齿人工后牙颊舌径宽度小于天然牙的目的是
城市化水平与经济发展关系的曲线表明,经济发展的前期阶段人均GNP增加一定数量(如100美元),需要相应提高的城镇人口比重的幅度应该()。
原材料账户期初余额为50万元,本期购进原材料30万元,生产领用原材料40万元,则期末账户上的原材料为()万元。
在归整或保存审计工作底稿时,下列表述中正确的是()。
运动负荷就是负荷量,它是由时间、数量和距离组成的。()
某居民违章搭建,严重影响市容。执法人员对他说:“如果你不在规定期限内自行拆除。那么,我们将依法强拆。”该居民回答:“我坚决不同意。”按照居民的说法,下列哪项判断是他同意的?()
私自拆阅邮件或窃听公民电话等通讯内容的行为是侵犯公民()的行为。
马克思主义唯物史观产生前,唯心史观长期占统治地位的根源在于()。
WhathelpsmaketheMiddleAtlanticStatesamajorcenterofinternationaltrade?
最新回复
(
0
)