首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]二阶可导,f(x)>0,f’’(x)<0((x∈(a,b)),求证:∫abf(x)dx.
设f(x)在[a,b]二阶可导,f(x)>0,f’’(x)<0((x∈(a,b)),求证:∫abf(x)dx.
admin
2018-06-27
73
问题
设f(x)在[a,b]二阶可导,f(x)>0,f’’(x)<0((x∈(a,b)),求证:
∫
a
b
f(x)dx.
选项
答案
联系f(x)与f’’(x)的是泰勒公式. [*]x
0
∈[a,b],f(x
0
)=[*].将f(x
0
)在[*]∈[a,b]展开,有 f(x
0
)=f(x)+f’(x)(x
0
-x)+[*]f’’(ξ)(x
0
-x)
2
(ξ在x
0
与x之间)<f(x)+f’(x)(x
0
-x)([*]∈[a,b],x≠
0
). 两边在[a,b]上积分得 ∫
a
b
f(x
0
)dx<∫
a
b
f(x)dx+∫
a
b
f’(x)(x
0
-x)dx=∫
a
b
f(x)dx+f(x
0
-x)df(x) =∫
a
b
f(x)dx-(b-x
0
)f(b)-(x
0
-a)f(a)+∫
a
b
f(x)dx≤2∫
a
b
f(x)dx. 因此 f(x
0
)(b-a)<2∫
a
b
f(x)dx,即[*]=∫
a
b
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jik4777K
0
考研数学二
相关试题推荐
设有三个线性无关的特征向量,求x和y应满足的条件.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:(1)A2.(2)矩阵A的特征值.
设f(x)在[0,1]上具有二阶导数.且满足条件|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明:.
求微分方程y"+5y’+6y=2e-x的通解.
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)0(x∈(0,1));
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A*一6E的秩.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
用泰勒公式确定下列无穷小量当χ→0时关于χ的无穷小阶数:(Ⅰ)(Ⅱ)∫0χ(et-1-t)2dt.
随机试题
Theworld’sfirstinstitutionofitskindwasfoundedin1753,basedonthecollectionslefttothenationbySirHansSloane,a
正常成人每24h尿量小于______为无尿,小于______为少尿,大于______为多尿。
向生产厂家订购设备,其质量控制工作的首要环节是对()进行评审。
按现行制度规定,下列关于资源税减免税的规定说法正确的有()。
商业助学贷款贷前调查的内容包括()。
凯恩斯的货币需求函数非常重视()。
团体包价旅游的服务项目通常包括()。
(1)在名称为Form1的窗体上添加一个标签,其名称为Label1,然后通过属性窗口设置窗体和标签的属性,实现如下功能:①窗体标题为“设置标签属性”;②标签的位置为:距窗体左边界500,距窗体顶边界300;③标签的标题为“等级考试”;
A、Manyuniversitystudentsprefersoftdrinkstofreshfruits.B、Mostofthemarefirst-or-secondyearcollegestudents.C、Anum
TheAmericanpublicdemandedthatthegovernmentadopta______foreignpolicyinhandlingrelationswiththeMiddleEast.
最新回复
(
0
)