首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年试题,21)设n元线性方程组Ax=b,其中 a为何值,方程组有无穷多解?求通解.
(2008年试题,21)设n元线性方程组Ax=b,其中 a为何值,方程组有无穷多解?求通解.
admin
2013-12-27
47
问题
(2008年试题,21)设n元线性方程组Ax=b,其中
a为何值,方程组有无穷多解?求通解.
选项
答案
若使方程组Ax=b有无穷多解,则|A|=(n+1)a
n
=0,即a=0.把a=0代入到矩阵A中,显然有r(A|B)=rA=n—1,方程组有一个基础解向量.取自由未知量x
1
=1,得到它的基础解系为k(1,0,0,…,0)
T
(k为任意常数);代入a=0后方程组化为[*]特解取为(0,1,0,…,0)
T
,则方程组Ax=b的通解为k(1,0,0,…,0)
T
+(0,1,0,…,0)
T
其中k为任意常数.
解析
本题的第(I)问亦可采用数学归纳法来证明:当n=1时,|A|=|2a|=2a,结论成立;当n=2时,
结论也成立;假设n=k一1时,命题亦成立,即有|A|
k-2
=(k一1)a
k-2
,|A|
k-1
=ka
k-1
,当n=k时,将|A|
k
按第一行展开得:|A|
k
=2a|A|
k-1
一a
2
|A|一2=2a.ka
k-1
一a
2
.(k一1)a
k-2
=(k+1)a
k
即结论仍成立.故而知原命正确,即有|A|=(n+1)a
n
.
转载请注明原文地址:https://kaotiyun.com/show/KC54777K
0
考研数学一
相关试题推荐
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,-2,3)T+(1,2,-1)T,k为任意常数.试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设A为n阶方阵(n≥2),A*是A的伴随矩阵,试证:当r(A)=n时,r(A*)=n;
求下列可降阶的高阶微分方程的通解.x2y“=(y‘)2+2xy‘;
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).求曲线L的方程;
求下列微分方程满足初始条件的特解:
设f(x)在(-∞,+∞)上连续,T为常数,则下述命题错误的是()
设函数f(x)可导,y=f(x3),当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.3,则f’(-1)=().
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
(2002年试题,六)设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d)记证明曲线积分,与路径L无关;
随机试题
急性胰腺炎血清ɑ淀粉酶活力增高,其高峰是在发病期后
物权是债权产生的前提,只有物权成立于债权之前,物权才优于一般的债权。()
招标人与中标人签订合同后()个工作日内,应当向中标人和未中标的投标人退还投标保证金。
简述税务登记的种类。
某企业于2015年12月31日购入一项固定资产,其原价为300万元,预计使用年限为5年,预计净残值为0.8万元,采用双倍余额递减法计提折旧。2016年度该项固定资产应计提的年折旧额为()万元。
甲、乙、丙、丁兄弟4人继承了一幅古画和一处房产,按照遗嘱兄弟4人的继承份额依次分别为40%、20%、20%、20%。古画由甲保管,房产已登记为4人共有,兄弟4人对共有未作出其他特殊约定。2017年4月1日,甲由于急需资金,擅自将该古画以50万元的
李木在某次考试中,课程甲和课程乙得178分,课程丙和课程丁得171分,课程乙和课程丙得174分,课程丁比课程甲高1分。问李木四门课程中哪门课程得分最高?()
一个统计总体()。
福禄贝尔在幼儿园教育实践中创制的活动玩具被称为()
新建一个窗体,其BorderStyle属性设置为FixedSingle,但运行时却没有最大化和最小化按钮,可能的原因是
最新回复
(
0
)