首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,—2,4,0)T,又B=(α3,α2,α1,β—α4),求方程组Bx=3α1+5α2—α3的通解。
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,—2,4,0)T,又B=(α3,α2,α1,β—α4),求方程组Bx=3α1+5α2—α3的通解。
admin
2019-03-23
53
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是四阶矩阵,α
1
,α
2
,α
3
,α
4
是四维列向量,若方程组Ax=β的通解是(1,2,2,1)
T
+k(1,—2,4,0)
T
,又B=(α
3
,α
2
,α
1
,β—α
4
),求方程组Bx=3α
1
+5α
2
—α
3
的通解。
选项
答案
由方程组Ax=β的通解表达式可知 R(A)=R(α
1
,α
2
,α
3
,α
4
)=4—1=3, 且 α
1
+2α
2
+2α
3
+α
4
=β,α
1
—2α
2
+4α
3
=0, 则B=(α
3
,α
2
,α
1
,β—α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),且α
1
,α
2
,α
3
线性相关,故R(B)=2。 又因为 (α
3
,α
2
,α
1
,β—α
4
)[*]=3α
1
+5α
2
—α
3
, 故知(—1,5,3,0)
T
是方程组Bx=3α
1
+5α
2
—α
3
的一个解。 (α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)[*]=4α
3
—2α
2
+α
1
=0, (α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)[*]=α
1
—2α
2
+4α
3
=0, 所以(4,—2,1,0)
T
,(2,—4,0,1)
T
是Bx=0的两个线性无关的解。 故Bx=3α
1
+5α
2
—α
3
的通解为 (—1,5,3,0)
T
+k
1
(4,—2,1,0)
T
+k
2
(2,—4,0,1)
T
,其中k
1
,k
2
是任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/KHV4777K
0
考研数学二
相关试题推荐
已知α1=(1,1,0,2)T,α2=(-1,1,2,4)T,α3=(2,3,a,7)T,α4=(-1,5,-3,a+6)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
n维向量α=(a,0,...,0,a)T,a<0,A=E-ααT,A-1=E+α-1ααT,求a.
设A是3阶不可逆矩阵,α1,α2是AX=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
证明:与基础解系等价的线性无关的向量组也是基础解系.
设①a,b取什么值时存在矩阵X,满足AX-CX=B?②求满足AX-CX=B的矩阵X的一般形式.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
设D由抛物线y=x2,y=4x2及直线y=1所围成.用先x后y的顺序,将I=f(x,y)dxdy化成累次积分.
给定曲线y=χ2+5χ+4,(Ⅰ)确定b的值,使直线y=-χ+b为曲线的法线;(Ⅱ)求过点(0,3)的切线.
随机试题
简述财务类人员的职业生涯规划。
做B-D试验的注意事项有
某新生儿,诊断为单侧完全性唇裂合并单侧完全性腭裂,同时伴有鼻部畸形。腭裂的正畸治疗应开始于
实物资产清查的技术推算法适应范围广,绝大部分实物资产都可以采用这种方法进行清查。()
关于培训与开发组织体系的陈述,错误的是()。
2013年4月,吴某设立一家有限责任公司,从事绿色食品开发,注册资本为200万元。公司成立半年后,为增加产品开发力度,吴某拟新增资本100万元,并为此分别与贾某、刘某洽谈,该二人均有意愿认缴全部新增资本,加入吴某的公司。吴某遂先后与贾某、刘某二人就投资事项
侦查:调查:证据
马克思主义中国化就是把马克思主义基本原理同中国革命、建设和改革的实践结合起来,同中国的优秀历史传统和优秀文化结合起来,既坚持马克思主义,又发展马克思主义。马克思主义中国化的科学内涵包括
下列有关数据库的描述,正确的是()。
AccordingtoPrimeMinisterWenJiabao,whatwillChinado?
最新回复
(
0
)