首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,—2,4,0)T,又B=(α3,α2,α1,β—α4),求方程组Bx=3α1+5α2—α3的通解。
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,—2,4,0)T,又B=(α3,α2,α1,β—α4),求方程组Bx=3α1+5α2—α3的通解。
admin
2019-03-23
37
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是四阶矩阵,α
1
,α
2
,α
3
,α
4
是四维列向量,若方程组Ax=β的通解是(1,2,2,1)
T
+k(1,—2,4,0)
T
,又B=(α
3
,α
2
,α
1
,β—α
4
),求方程组Bx=3α
1
+5α
2
—α
3
的通解。
选项
答案
由方程组Ax=β的通解表达式可知 R(A)=R(α
1
,α
2
,α
3
,α
4
)=4—1=3, 且 α
1
+2α
2
+2α
3
+α
4
=β,α
1
—2α
2
+4α
3
=0, 则B=(α
3
,α
2
,α
1
,β—α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),且α
1
,α
2
,α
3
线性相关,故R(B)=2。 又因为 (α
3
,α
2
,α
1
,β—α
4
)[*]=3α
1
+5α
2
—α
3
, 故知(—1,5,3,0)
T
是方程组Bx=3α
1
+5α
2
—α
3
的一个解。 (α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)[*]=4α
3
—2α
2
+α
1
=0, (α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)[*]=α
1
—2α
2
+4α
3
=0, 所以(4,—2,1,0)
T
,(2,—4,0,1)
T
是Bx=0的两个线性无关的解。 故Bx=3α
1
+5α
2
—α
3
的通解为 (—1,5,3,0)
T
+k
1
(4,—2,1,0)
T
+k
2
(2,—4,0,1)
T
,其中k
1
,k
2
是任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/KHV4777K
0
考研数学二
相关试题推荐
与α1=(1,-1,0,2)T,α2=(2,3,1,1)T,α3=(0,0,1,2)T都正交的单位向量是________.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵,其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
设α是n维非零列向量,记A=E-ααT.证明αTα≠1A可逆.
设y=∫0χdt+1,求它的反函数χ=φ(y)的二阶导数及φ〞(1).
求曲线y=+ln(1+ex)的渐近线方程.
给定曲线y=χ2+5χ+4,(Ⅰ)确定b的值,使直线y=-χ+b为曲线的法线;(Ⅱ)求过点(0,3)的切线.
随机试题
妊娠合并再生障碍性贫血,孕期血红蛋白宜维持在
四妙勇安汤治疗血闭塞行脉管炎的中医证型是()
患者,女,81岁。冠心病住院治疗,住院前3天与护士们关系融洽。第4天,年轻护士张某在为其进行静脉输液时,静脉穿刺3次失败,更换李护士后方成功。患者非常不满,其女儿向护士长进行抱怨。从此,患者拒绝张护士为其护理。护患关系发生冲突的主要因素是
根据《国家赔偿法》的规定,对下列情形可以适用精神损害抚慰金的有:()
一声波波源相对媒质不动,发出的声波频率是v0。设一观察者的运动速度为波速的1/2,当观察者迎着波源运动时,他接收到的声波频率是:
根据《企业会计准则-基本准则》规定,所有者权益的来源包括()。
统计表中的主词表明统计资料所反映的总体及其分组的名称,一般写在统计表的()。
精神活动包括(),属于精神分析关于人格结构的观点。
使用PowerDesigner的DataArchitect,可以对已有数据库生成物理数据模型(PDM),这种功能通常称为【】。
Don’tworry,behappyand,accordingtoanewresearch,youwillalsobehealthy.Itisestimatedthatoverthe【B1】______o
最新回复
(
0
)