首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A=E+xyT,x与y都是n×1矩阵,且xTy=2,求A的特征值、特征向量.
设A是n阶矩阵,A=E+xyT,x与y都是n×1矩阵,且xTy=2,求A的特征值、特征向量.
admin
2019-05-14
61
问题
设A是n阶矩阵,A=E+xy
T
,x与y都是n×1矩阵,且x
T
y=2,求A的特征值、特征向量.
选项
答案
令B=xy
T
=[*](y
1
,y
2
,…,y
n
),则B
2
=(xy
T
)(xy
T
)=x(y
T
x)y
T
=2xy
T
=2B, 可见B的特征值只能是0或2. 因为r(B)=1,故齐次方程组Bx=0的基础解系由n一1个向量组成,则 [*] 基础解系是:α
1
=(一y
2
,y
1
,0,…,0)
T
, α
2
=(一y
3
,0,y
1
,…,0)
T
,…, α
n-1
=(一y
n
,0,0,…,y
1
)
T
. 这正是B的关于λ=0,也就是A关于λ=1的n一1个线性无关的特征向量. 由于B
2
=2B,对B按列分块,记B=(β
1
,β
2
,…,β
n
),则B(β
1
,β
2
,…,β
n
)=2(β
1
,β
2
,…,β
n
),即Bβ
i
=2β
i
.可见α
n
1,x
2
,…,x
n
)
T
是B关于λ=2,也就是A关于λ=3的特征向量. 那么,A的特征值是1(n一1重)和3,特征向量分别是 k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
,k
n
α
n
,其中k
1
,k
2
,…,k
n-1
不全为0,k
n
≠0.
解析
令B=xy
T
,则A=E+B,如λ是B的特征值,α是对应的特征向量,那么
Aα=(B+E)α=λα+α=(λ+1)α.
可见λ+1就是A的特征值,α是A关于λ+1的特征向量.反之,若Aα=λα,则有Bα=(λ一1)α.
所以,为求A的特征值、特征向量就可转化为求B的特征值、特征向量.
转载请注明原文地址:https://kaotiyun.com/show/Lr04777K
0
考研数学一
相关试题推荐
设二次型f(x1,x2,x3)=XTAX,tr(A)=1,又B=且AB=O.求矩阵A.
设f(x)=,求df(x)|x=1.
求微分方程y’一2xy=ex2的满足初始条件y(0)=1的特解.
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明:存在ξ∈(1,2),使得.
设f(x)为连续函数,证明:∫0πxf(sinx)dx=∫0πf(sinx)dx=πf(sinx)dx;
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
判断级数的敛散性,若收敛是绝对收敛还是条件收敛.
设f(x)在区间[a,b]上阶连续可导,证明:存在ξ∈(a,b),使得∫abf(x)dx=(b-a)f’’(ξ).
曲线y=x4e-x2(x≥0)与x轴围成的区域面积为__________.
若当x→0时,有,则a=______
随机试题
意识的本质是()。
患儿诊断为病毒性肠炎、重度等渗性脱水、伴明显循环衰竭、中度代谢性酸中毒,第一天治疗方案为:全天液体总量为150~180ml/kg,首选液体治疗方案()
A.横目斜视B.目睛微定C.昏睡露睛D.双眼睑下垂E.瞳仁扩大
患者,男,45岁。2个月来反酸、反食和烧心,多于餐后明显,平卧或身体前倾时易出现,近1周来加重,有时伴胸骨后疼痛,ECG未见明显异常,内镜检查见食管黏膜破损有融合。选用的最佳治疗药物是
补虚药具有的功效是( )。
滴丸剂的特点是( )。
在八纲辨证中,判断疾病性质的是()。
施工现场的临时食堂,用餐人数在( )的,应设置简易有效的隔油池,使产生的污水经过隔油池后再排人市政污水管网。
根据《中华人民共和国标准施工招标文件》,承包人的义务和责任有()。
Whenwethinkofgreenbuildings,wetendtothinkofnewones—thekindofhigh-tech,solar-paneled(装有太阳能板的)masterpiecesthat【
最新回复
(
0
)