首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A=E+xyT,x与y都是n×1矩阵,且xTy=2,求A的特征值、特征向量.
设A是n阶矩阵,A=E+xyT,x与y都是n×1矩阵,且xTy=2,求A的特征值、特征向量.
admin
2019-05-14
58
问题
设A是n阶矩阵,A=E+xy
T
,x与y都是n×1矩阵,且x
T
y=2,求A的特征值、特征向量.
选项
答案
令B=xy
T
=[*](y
1
,y
2
,…,y
n
),则B
2
=(xy
T
)(xy
T
)=x(y
T
x)y
T
=2xy
T
=2B, 可见B的特征值只能是0或2. 因为r(B)=1,故齐次方程组Bx=0的基础解系由n一1个向量组成,则 [*] 基础解系是:α
1
=(一y
2
,y
1
,0,…,0)
T
, α
2
=(一y
3
,0,y
1
,…,0)
T
,…, α
n-1
=(一y
n
,0,0,…,y
1
)
T
. 这正是B的关于λ=0,也就是A关于λ=1的n一1个线性无关的特征向量. 由于B
2
=2B,对B按列分块,记B=(β
1
,β
2
,…,β
n
),则B(β
1
,β
2
,…,β
n
)=2(β
1
,β
2
,…,β
n
),即Bβ
i
=2β
i
.可见α
n
1,x
2
,…,x
n
)
T
是B关于λ=2,也就是A关于λ=3的特征向量. 那么,A的特征值是1(n一1重)和3,特征向量分别是 k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
,k
n
α
n
,其中k
1
,k
2
,…,k
n-1
不全为0,k
n
≠0.
解析
令B=xy
T
,则A=E+B,如λ是B的特征值,α是对应的特征向量,那么
Aα=(B+E)α=λα+α=(λ+1)α.
可见λ+1就是A的特征值,α是A关于λ+1的特征向量.反之,若Aα=λα,则有Bα=(λ一1)α.
所以,为求A的特征值、特征向量就可转化为求B的特征值、特征向量.
转载请注明原文地址:https://kaotiyun.com/show/Lr04777K
0
考研数学一
相关试题推荐
若正项级数都收敛,证明下列级数收敛:.
计算x2dydz+y2dzdx+z2dxdy,其中∑:(x-1)2+(y一1)2+=1(y≥1),取外侧.
求曲线y=x2一2x、y=0、x=1、x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
计算(x2+y2)dxdydz,其中Ω是由曲线绕z轴一周所成的曲面介于z=2与z=8之间的几何体.
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
判断级数的敛散性,若收敛是绝对收敛还是条件收敛.
设an>0,数列{an}单调减小且趋于零,证明:级数收敛。
设A、B分别为m阶和n阶方阵,且|A|=a,|B|=b,则行列式=______
设A,B为两个随机事件,则=__________.
设f(x)具有连续导数,且F(x)=(x2-t2)f’(t)dt,若当x→0时F’(x)与x2为等价无穷小,则f’(0)=______.
随机试题
初级精母细胞()
治疗气虚便秘宜选
甲、乙、丙三人成立了一家合伙企业,合伙协议约定由甲经营并承担合伙企业的全部债务,丁是该合伙企业的债权人。当合伙企业的财产不足以偿付丁的债权时,丁()
螺旋体感染首选
李某是否有权请求法院撤销王某和赵某的买卖合同?请说明理由。如果李某主张撤销王某继承权抛弃的行为,能否得到法院的支持,请说明理由。
机器装配过程一般分为()。
因确认股东资格纠纷引起的民事诉讼,由公司住所地人民法院管辖。()
国别价值和()存在“比较差异”,是国际价值规律发挥作用的一种表现形式。
南宋时期形成的坊刻中心有()等。
下图中的立体图形①是由立体图形②、③和④组合而成,下列哪一项能够填入问号处?
最新回复
(
0
)