首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
admin
2019-07-22
43
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
(1)证明:α
1
,α
2
,…,α
n
线性无关;
(2)求A的特征值与特征向量.
选项
答案
(1)令x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0,则 x
1
Aα
1
+x
2
Aα
2
+…+x
n
Aα
n
=0[*]x
1
α
2
+x
2
α
3
+…+x
n-1
α
n
=0 x
1
Aα
2
+x
2
Aα
3
+…+x
n-1
Aα
n
=0[*]x
1
α
3
+x
2
α
4
+…+x
n-2
α
n
=0 … x
1
α
n
=0 因为α
n
≠0,所以x
1
=0,反推可得x
2
=…x
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)A(α
1
,α
2
,…,α
n
)=(α
1
,α
2
,…,α
n
)[*],令P=(α
1
,α
2
,…,α
n
),则P
-1
AP=[*]=B,则A与B相似,由|λE-B|=0[*]λ
1
=…=λ
n
=0,即A的特征值全为零,又r(A)=n-1,所以AX=0的基础解系只含有一个线性无关的解向量,而Aα
n
=0α
n
(α
n
≠0),所以A的全部特征向量为kα
n
(k≠0).
解析
转载请注明原文地址:https://kaotiyun.com/show/MhN4777K
0
考研数学二
相关试题推荐
设n维行向量α=(,0,…,0,),矩阵A=I一αTα,B=I+2αTα,其中I为n阶单位矩阵,则AB=
设f(χ)二阶连续可导,且=1,f〞(0)=e,则=_______.
求满足初始条件y〞+2χ(y′)2=0,y(0)=1,y′(0)=1的特解.
求微分方程χy〞+3y′=0的通解.
设有平面闭区域,D={(x,y)|—a≤x≤a,x≤y≤a},D1={(x,y)|0≤x≤a,x≤y≤a},则=()
求极限
设k为常数,方程kx-+1=0在(0,+∞)内恰有一根,求k的取值范围.
设f(x)=又a≠0,问a为何值时存在.
设f(x)在[a,b]上有二阶连续导数,求证:∫abf(x)dx=(b-a)[f(a)+f(b)]+∫abf’’(x)(x-a)(x-b)dx.
已知f’(x)=arctanx2,则
随机试题
肺实变阻塞性肺不张
关于法律职业人员权利的表述.下列哪一选项不能成立?
围岩径向注浆适用于隧道开挖后围岩稳定时间短,变形较大的地段。()
建筑智能化通信网络系统中的广播音响系统主要设备有()等。
根据《银行业从业人员职业操守》中“内幕消息”原则的要求,银行业从业人员不得()。
科学研究是现代高等学校最基本的职能。()
下面()变化会使总需求曲线AD左平移。
XML是互联网联合组织创建的一组规范,XML是开放的,是(10)标准。XML主要有(11)等三个要素,为了增强XML文件结构化要求,一般要使用XML的辅助技术(12)。
OneoutoffivebridgesintheUnitedStatesisoutmoded.
Whatisthepurposeofholdingthefirst-everGirls20-Summit?
最新回复
(
0
)