首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
admin
2019-07-22
58
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
(1)证明:α
1
,α
2
,…,α
n
线性无关;
(2)求A的特征值与特征向量.
选项
答案
(1)令x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0,则 x
1
Aα
1
+x
2
Aα
2
+…+x
n
Aα
n
=0[*]x
1
α
2
+x
2
α
3
+…+x
n-1
α
n
=0 x
1
Aα
2
+x
2
Aα
3
+…+x
n-1
Aα
n
=0[*]x
1
α
3
+x
2
α
4
+…+x
n-2
α
n
=0 … x
1
α
n
=0 因为α
n
≠0,所以x
1
=0,反推可得x
2
=…x
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)A(α
1
,α
2
,…,α
n
)=(α
1
,α
2
,…,α
n
)[*],令P=(α
1
,α
2
,…,α
n
),则P
-1
AP=[*]=B,则A与B相似,由|λE-B|=0[*]λ
1
=…=λ
n
=0,即A的特征值全为零,又r(A)=n-1,所以AX=0的基础解系只含有一个线性无关的解向量,而Aα
n
=0α
n
(α
n
≠0),所以A的全部特征向量为kα
n
(k≠0).
解析
转载请注明原文地址:https://kaotiyun.com/show/MhN4777K
0
考研数学二
相关试题推荐
[*]
抛物线y2=2χ把圆χ2+y2=8分成两个部分,求左右两个部分的面积之比.
设对一切的χ,有f(χ+1)=2f(χ),且当χ∈[0,1]时f(χ)=χ(χ2-1),讨论函数f(χ)在χ=0处的可导性.
设n维行向量α=(,0,…,0,),A=E-αTα,B=E+2αTα,则AB为().
曲线eχ+y-sin(χy)=e在点(0,1)处的切线方程为=_______.
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2χ-y)+g(χ,χy),求
设L:(0≤t≤2π).(1)求曲线L与χ轴所围成平面区域D的面积.(2)求区域D绕χ轴旋转一周所成几何体的体积.
设函数f(x)=若反常积分∫1+∞f(x)dx收敛,则()
计算行列式
行列式=________。
随机试题
垄断厂商长期均衡的条件是()
[*]
炎性乳癌
女性,54天,黑粪40天伴贫血于10月13日入院。患儿是第1胎,足月顺产,因地震系在防震棚出生。生后14天始排黑粪,量不等,未见脐及皮肤等处出血,不发热。因贫血严重,多次输血及药物治疗均无效。粪便检查:有(56~76)×(36~40)mm虫卵,椭圆形。两
下列对“严格实行国有土地有偿使用制度”的叙述,正确的有()。
下列情形中,人民法院应当再审的有()。[2013年真题]
青海省有“草原门户”之称的是()。
试分析英语film用作名词时5项意义之间的派生关系:①皮肤薄膜;②眼睛里长出的异常薄膜(俗称眼翳);③薄薄的一层透明膜状物;④摄影用的胶卷;⑤电影。
TopmanagementrolesatmultinationalcorporationsinAsiaaretypicallyheldbyWesterners.ButnotjustanytypeofWesterner-
某公司分配给人事部的IP地址块为211.67.19.224/27,分配给培训部的IP地址块为211.67.19.208/28,分配给销售部的IP地址块为215.167.19.192/28,那么这3个地址块经过聚合后的地址为()。
最新回复
(
0
)