首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,又B为3阶非零矩阵,使得AB=2B. (Ⅰ)求常数a; (Ⅱ)判断矩阵A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
设A=,又B为3阶非零矩阵,使得AB=2B. (Ⅰ)求常数a; (Ⅱ)判断矩阵A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2021-03-16
49
问题
设A=
,又B为3阶非零矩阵,使得AB=2B.
(Ⅰ)求常数a;
(Ⅱ)判断矩阵A是否可对角化,若可对角化,求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(Ⅰ)由AB=2B得(2E-A)B=0,则r(2E-A)+r(B)≤3, 因为B≠0,所以r(B)≥1,从而r(2E-A)≤2<3,即|2E-A|=0, 即λ=2为矩阵A的特征值. 由|2E-A|=[*]=-(-a-4)=0得a=-4, 即[*] (Ⅱ)由|λE-A|=[*]=(λ+3)(λ-1)(λ-2)=0得 A的特征值为λ
1
=-3,λ
2
=1,λ
3
=2; 因为矩阵A的特征值都是单根,所以矩阵A可以相似对角化. 当λ
1
=-3时,由3E+A=[*]得 λ
1
=-3对应的线性无关的特征向量为α
1
=[*]: 当λ
2
=1时,由E-A=[*]得 λ
2
=1对应的线性无关的特征向量为α
2
=[*] 当λ
3
=2时,由2E-A=[*]得 λ
3
=2对应的线性无关的特征向量为α
3
=[*], 令P=[*],则P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Mzy4777K
0
考研数学二
相关试题推荐
(2001年)设f(χ)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0,(1)写出f(χ)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[-a,a]上至少存在一点η,使a3f〞(η)=∫-aaf(χ)dχ
证明:(一1
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕z轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达
设D为不等式0≤x≤3,0≤y≤1所确定的区域,则min{x,y}dxdy=________。
微分方程(y2+1)dx=y(y一2x)dy的通解是____________.
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
积分
设曲线的参数方程为的曲线段的弧长S=_____________.
设f(x)在区间[a,﹢∞)上存在二阶导数,且,其中a,b均为常数,则=_______.
设函数f(t)在(0,+∞)内具有二阶连续导数,函数z=满足=0,若f(1)=0,f′(1)=1,求f(χ).
随机试题
戊酸雌二醇硫酸阿托品
下列有关项目编码的叙述,错误的是()。
根据商业银行法律制度的规定,商业银行的下列事项中,应当经中国银监会批准的有()。
图书编辑出版的责任机制包括()等内容。
他们认为不应该纠缠于中日间的陈年旧账,要远望中日友好的巨大利益,他们中一些“杰出的”代表还根据欧洲经济共同体的模式提出了一个中日关系新思维理论,认为如果早在20世纪建立日本人设计的“大东亚共荣圈”,将会给亚洲人民带来巨大福祉。作者对“他们”的态度是
2,2,3,4,9,32,()
上海小刀会起义
由以下while构成的循环,循环体执行的次数是intk=0;while(k=1)k++;
设有定义:classC{public:intValUe;};intX,*p;则以下引用形式中,正确的是()。
Asisknowntoall,theorganizationandmanagementofwagesandsalariesareverycomplex.Generallyspeaking,theAccountsDep
最新回复
(
0
)