首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在ξ∈(a,b),使得f"(ξ)=f(ξ).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在ξ∈(a,b),使得f"(ξ)=f(ξ).
admin
2021-11-25
59
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:
存在ξ∈(a,b),使得f"(ξ)=f(ξ).
选项
答案
令ψ(x)=e
-x
[f’(x)+f(x)],ψ(ξ
1
)=ψ(ξ
2
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得ψ’(ξ)=0 而ψ’(x)=e
-x
[f"(x)-f(x)]且e
-x
≠0,所以f"(ξ)=f(ξ)
解析
转载请注明原文地址:https://kaotiyun.com/show/N7y4777K
0
考研数学二
相关试题推荐
设其中D1={(x,y){x2+y2≤R2},D2={(x,y){x2+y2≤2R2},D3={(x,y)}|x|≤R,|y|≤R},则下列关于I1,I2,I3大小关系正确的是
设向量组,α1,α2……αr是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解.证明:向量组β,β+α1,β+α2,…,β+αr线性无关.
设A是m×n矩阵,C是n阶可逆矩阵.矩阵A的秩为r,矩阵AC的秩为r1,则
设其中与对角矩阵相似的有()
设A是m×n矩阵,且m>n,下列命题正确的是().
在曲线y=(χ-1)2上的点(2,1)处作曲线的法线,由该法线、χ轴及该曲线所围成的区域为D(y>0),则区域D绕χ轴旋转一周所成的几何体的体积为().
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则()
设=b,其中[x]表示不超过x的最大整数,则().
设函数f(x)在[e,+∞)上连续,且反常积分收敛,若f(x)=,则f(x)=_______.
设=b,其中[x]表示不超过x的最大整数,则().
随机试题
何谓萃取?
64岁男性患者,反复咳嗽。咳痰,痰中带血2周。体温38.3℃,WBC12×109/L,胸片右肺门肿块影,伴远端大片状阴影,抗炎治疗阴影不吸收。有助于尽快明确诊断的检查首选
案情:甲公司委派业务员张某去乙公司采购大蒜,张某持盖章空白合同书以及采购大蒜授权委托书前往。甲、乙公司于2010年3月1日签订大蒜买卖合同,约定由乙公司代办托运,货交承运人丙公司后即视为完成交付。大蒜总价款为100万元,货交丙公司后甲公司付50万
2015年1月1日,甲公司以银行存款700万元及一项土地使用权取得其母公司乙公司控制的丙公司60%股权,并于当日起能够对丙公司实施控制。合并日,该土地使用权的账面价值为1000万元,公允价值为1500万元;丙公司净资产的账面价值为2700万元,可辨认净资产
【B1】【B6】
求证:若一元n次多项式f(x)=cnxn+cn-1xn-1+…+c1x+c0有n+1个不同的根,则f(x)=0.
Pentium4微处理器在保护模式下,代码段不能访问特权级比它______的数据段。
A、聚会B、散步C、游泳D、下象棋C根据男的说的“再去游一圈啊?”,可以推断出他们是在游泳,所以选C。
"Itisbettertogivethantoreceive";"BewareofGreeks(ancient,ofcourse)bearinggifts".Giftsareafundamentalelemento
Thefirstattemptofmostartists,musicians,andwritersisseldomamasterpiece.Ifyouconsideryourdraftsasdressrehearsa
最新回复
(
0
)