首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
“对任意给定的ε∈(0,1),总存在正整数N,当,n≥N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
“对任意给定的ε∈(0,1),总存在正整数N,当,n≥N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
admin
2014-10-08
68
问题
“对任意给定的ε∈(0,1),总存在正整数N,当,n≥N时,恒有|x
n
-a|≤2ε”是数列{x
n
}收敛于a的
选项
A、允分条件但非必要条件.
B、必要条件但非充分条件.
C、允分必要条件.
D、既非充分条件又非必要条件.
答案
C
解析
[分析] 本题考查对数列收敛性定义的理解,注意到2ε仍是可任意小的正数,因此上述条件也是数列收敛的充要条件.当然也可严格推导出它与标准定义是等价的.
[详解] 由数列{x
n
}收敛于a
“对任意给定的ε
1
>0,总存在正整数N
1
,当n>N
1
时,恒有|x
n
-a|<ε
1
”,显然可推导出:“对任意给定的ε∈(0,1),总存在正整数N,当n≥N时,恒有|x
2n
-a|≤2ε”.
反过来,若有“对任意给定的ε∈(0,1),总存在正整数N,当n≥N时,恒有|x
n
-a|≤2ε”,则对任意的ε
1
>0(不妨设0<ε
1
<1,当ε
1
≥1时,取
,代替即可)。取
,存在正整数N,当n≥N时,恒有|x
n
-a|≤2ε=
,令N
1
=N-1,则满足“对任意给定的ε
1
>0,总存在正整数N
1
,当n>N
1
时,恒有|x
n
-a|<ε
1
”.可见上述两种说法是等价的,故应选(C).
[评注] 在复习过程中,对基本概念要理解透彻,而不仅仅在于是否记住.本题若真正理解了数列极限的概念,并注意到2ε仍是可任意小的正数,则可立即得到正确选项.
转载请注明原文地址:https://kaotiyun.com/show/NA34777K
0
考研数学二
相关试题推荐
设α,β,γ均为大于1的常数,则级数()
A、 B、 C、 D、 D
[*]
设f(x)在x=x0的某邻域内存在二阶导数,且=a>0,则存在点(x0,f(x0))的左、右侧邻域U—与U+使得()
设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为-1.证明:存在ξ∈(0,1),使得f"(ξ)≥8.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f’’(ξ)=0。
设矩阵A=可逆,向量α=(1,b,1)T是矩阵A*的一个特征向量,b>0,λ是a对应的特征值,则(a,b,λ)为()
设函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=0,=0.证明:(Ⅰ)存在ξ∈(a,b),使得f(ξ)=0;(Ⅱ)存在η∈(a,b),使得f"(η)=f’(η).
设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0,证明:向量组α,4α,…,AAk-1α线性无关.
根据题目要求,进行作答。证明xn+1~(n→∞)
随机试题
下列选项中,不符合股权投资基金合格投资者标准的是()。
试述审美形态与人的思维方式的关系。
简述领导的基本原则。
材料1加大精准脱贫力度。今年再减少农村贫困人口1000万以上,完成易地扶贫搬迁280万人。深入推进产业、教育、健康、生态和文化等扶贫,补齐基础设施和公共服务短板,加强东西部扶贫协作和对口支援,注重扶贫同扶志、扶智相结合,激发脱贫内生动力。强化对深度贫困
下列关于数码录音笔的记述中,不正确的是________。
甲公司2010年度实现利润总额为500万元,无其他纳税调整事项,经税务机关核实的2009年度亏损额为380万元,该公司2010年度应缴纳的企业所得税税额为()万元。
InthepasttwoweekswehavelookedatthehappinessformuladefinedbypositivepsychologistMartinSeligman,whereH(happines
按照我国《宪法》和1981年全国人大常委会《关于加强法律解释工作的决议》的规定,下列选项中,属于狭义的立法解释的是()。
软件按功能可以分为应用软件、系统软件和支撑软件(或工具软件)。下面属于应用软件的是
Vousêtesintelligent,il_____estaussi..
最新回复
(
0
)