首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e-x的一个特解,此曲线经过原点且在原点处的切线平行于x轴. (Ⅰ)求曲线y=y(x)的表达式; (Ⅱ)求曲线y=y(x)到x轴的最大距离; (Ⅲ)计算积分∫0+∞y(x)dx.
设曲线y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e-x的一个特解,此曲线经过原点且在原点处的切线平行于x轴. (Ⅰ)求曲线y=y(x)的表达式; (Ⅱ)求曲线y=y(x)到x轴的最大距离; (Ⅲ)计算积分∫0+∞y(x)dx.
admin
2021-05-19
65
问题
设曲线y=y(x)(x>0)是微分方程2y"+y’-y=(4-6x)e
-x
的一个特解,此曲线经过原点且在原点处的切线平行于x轴.
(Ⅰ)求曲线y=y(x)的表达式;
(Ⅱ)求曲线y=y(x)到x轴的最大距离;
(Ⅲ)计算积分∫
0
+∞
y(x)dx.
选项
答案
(Ⅰ)微分方程的特征方程为 2λ
2
+λ-1=0, 特征值为λ
1
=-1,λ
2
=[*],则微分方程2y"+y’-y=0的通解为 [*] 令非齐次线性微分方程2y"+y’-y=(4-6x)e
-x
的特解为y
0
(x)=x(ax+b)e
-x
,代入原方程得a=1,b=0,故原方程的特解为y
0
(x)=x
2
e
-x
,原方程的通解为 [*] 由初始条件y(0)=y’(0)=0得C
1
=C
2
=0,故y=x
2
e
-x
. (Ⅱ)曲线y=x
2
e
-x
到x轴的距离为d=x
2
e
-x
, 令d’=2xe
-x
-x
2
e
-x
=x(2-x)e
-x
=0,得x=2. 当x∈(0,2)时,d’>0; 当x>2时,d’<0, 则x=2为d=x
2
e
-x
的最大值点,最大距离为d(2)=[*] (Ⅲ)∫
0
+∞
y(x)dx=∫
0
+∞
x
2
e
-x
dx=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/Nby4777K
0
考研数学二
相关试题推荐
设f(x,y)可微,f(1,2)=2,f’x(1,2)=3,f’y(1,2)=4,φ(x)=f[x,f(x,2x)],则φ’(1)=_______.
=_______(其中a为常数).
交换积分次序=_______
设f(χ)=,D为-∞<χ<+∞,-∞<y<+∞,则f(y)f(χ+y)dχdy=_______.
[*]为任意常数C为任意常数.
已知矩阵的特征值的和为3,特征值的乘积是一24,则b=__________。
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
y=eχ在χ=0处的曲率半径为R=_______.
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于().
设D是由曲线y=(0≤x≤1)与(0≤t≤π/2)围成的平面区域,求D绕x轴旋转一周所得旋转体的体积和表面积。
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)