首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型f(x1,x2,x3)=xTAx其矩阵A各行元素之和均为0,且满足AB+B=0,其中 (Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换; (Ⅱ)若A+kE正定,求k的取值.
已知三元二次型f(x1,x2,x3)=xTAx其矩阵A各行元素之和均为0,且满足AB+B=0,其中 (Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换; (Ⅱ)若A+kE正定,求k的取值.
admin
2015-04-30
50
问题
已知三元二次型f(x
1
,x
2
,x
3
)=x
T
Ax其矩阵A各行元素之和均为0,且满足AB+B=0,其中
(Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换;
(Ⅱ)若A+kE正定,求k的取值.
选项
答案
(Ⅰ)因为A各行元素之和均为0,即 [*] 由此可知λ=0是A的特征值,α
1
=(1,1,1)
T
是λ=0的特征向量. 由AB=一B知一1是A的特征值,α
2
=(1,0,一1)
T
,α
3
=(0,1,一1)
T
是λ=一1的线性无关的特征向量. 因为α
2
,α
3
不正交,将其正交化有 β
1
=α
2
=(1,0,一1)
T
, [*] (Ⅱ)因为A的特征值为一1,一1,0,所以A+栖的特征值为k一1,k一1,k.那么A+kE正定的充分必要条件是k>1.
解析
转载请注明原文地址:https://kaotiyun.com/show/NfbD777K
0
考研数学二
相关试题推荐
电视剧《乔家大院》,再现了清朝一著名商人,从咸丰至慈禧太后统治年间的艰难创业史。剧中的“乔致庸”是当时哪一商帮中的代表人物?()
我国南方的“社日节”在北方称为()。
准公共品的特征是()。
A、 B、 C、 D、 C奇数项图都为直线,偶数项图都为圆。
2006年是“十一五”的开局之年。江苏省各级卫生部门在省委、省政府的领导下,紧紧围绕富民强省、“两个率先”目标,全面落实科学发展观,重点加强基层、基础工作,大力发展农村卫生、公共卫生、社区卫生,全面推进中医药、卫生监督、科技人才建设和卫生行风建设,各项工作
有确凿的证据显示,偏头痛(严重的周期性头痛)不是由于心理上的原因引起的,而是完全由生理上的原因所致,然而,数项研究结果表明那些因为偏头痛受到专业化治疗的人患有标准心理尺度的焦虑症的比率比那些没经专业治疗的偏头痛患者的高。下面哪一项如果正确,最能有助于解决上
两工厂各加工480件产品,甲工厂每天比乙工厂多加工4件,完成任务所需时间比乙工厂少10天,设甲工厂每天加工产品x件,则x满足的方程为()。
给定资料1.2017年中央一号文件是新世纪以来指导“三农”工作的第14个中央一号文件。这份题为《中共中央国务院关于深入推进农业供给侧结构性改革加快培育农业农村发展新动能的若干意见》的文件,首次提出“田园综合体”概念,指出“支持有条件的乡村建设以农民合
如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问阴影部分的面积是多少?
设u=u(x,t)有二阶连续导数,并满足其中a>0为常数.(Ⅰ)作自变量替换ξ=x一at,η=x+at,导出u作为ξ,η的函数的二阶偏导数所满足的方程.(Ⅱ)求u(x,t).
随机试题
行政强制措施的种类:限制公民人身自由;查封场所、设施或者财务;扣押财务;____________;其他行政强制措施。
正常成人网织红细胞的百分数为(1)___________,绝对值为(2)___________。
变异型心绞痛患者的首选药物是
肝素抗凝作用的特点是
监理人应在开工日期()天前向承包人发出开工通知。
世界贸易组织的总部设在()。
下列属于黄茶的著名茶叶品种是()。
有14个纸盒,其中有装1只球的,也有装2只和3只球的。这些球共有25只,装1只球的盒数等于装2只球和3只球的盒数和。装3只球的盒子有多少个?()
骨质疏松症是一种退行性骨代谢性疾病,一般随年龄增长,患病风险增加。正常来说,人体在40岁左右时骨量会达到最高值,随后骨骼钙质开始慢慢流失。从近几年门诊、住院的情况来看,大部分出现骨钙质流失的年轻人有一个共同点:都有爱喝碳酸饮料和咖啡的习惯。由此有人说喝碳酸
以下叙述正确的是
最新回复
(
0
)