首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,…,αt是齐次方程组Aχ=0的基础解系,试判断α1+α2,α2+α3,…,αt-1+αt,αt+α1是否为Aχ=0的基础解系,并说明理由.
已知α1,α2,…,αt是齐次方程组Aχ=0的基础解系,试判断α1+α2,α2+α3,…,αt-1+αt,αt+α1是否为Aχ=0的基础解系,并说明理由.
admin
2018-06-12
34
问题
已知α
1
,α
2
,…,α
t
是齐次方程组Aχ=0的基础解系,试判断α
1
+α
2
,α
2
+α
3
,…,α
t-1
+α
t
,α
t
+α
1
是否为Aχ=0的基础解系,并说明理由.
选项
答案
作为齐次方程组AX=0的基础解系α
1
,α
2
,…,α
t
的线性组合,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
是AX=0的一组解,个数=t=n-r(A).α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
是不是AX=0的基础解系只要判断它们是否线性无关. 设A=(α
1
,α
2
,…,α
t
),B=(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
),则B=AC,其中 [*] 因为α
1
,α
2
,…,α
t
线性无关,所以A列满秩,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)=r(B)=r(C). |C|=1+(-1)
t+1
, 当t是奇数时,|C|=2,C可逆,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)=t,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
线性无关,因此是AX=0的基础解系. 当t是偶数时,|C|=0,C不可逆,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)<t,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
线性相关,因此不是AX=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/OFg4777K
0
考研数学一
相关试题推荐
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
设A=那么(P-1)2010A(Q2011)-1=()
设A=,B是3阶非零矩阵,且AB=O,a=_______.
设F(χ,y)在点(χ0,y0)某邻域有连续的偏导数,F(χ0,y0)=0,则F′y(χ0,y0)≠0是F(χ,y)=0在点(χ0,y0)某邻域能确定一个连续函数y=y(χ),它满足y0=y(χ0),并有连续的导数的_______条件.
设f(χ)在[0,1]连续且非负但不恒等于零,记I1=∫01f(χ)dχ,I2=(sinχ)dχ,I3=f(tanχ)dχ,则它们的大小关系为
设证明:y=f(x)为奇函数,并求其曲线的水平渐近线;
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=_____
计算曲面积分(x3+az2)dydz+(y3+ax2)dzdx+(z3+ay2)dxdy,其中∑为上半球面的上侧.
当x→0+时,下列无穷小中,阶数最高的是().
求下列函数的导数与微分:(Ⅰ)设y=,求dy;(Ⅱ)设y=arctanex-ln;(Ⅲ)设y=(x-1),求y′与y′(1).
随机试题
下列关于企业价值评估范围的表述,正确的是()
Ourbrainsworkincomplexandstrangeways.Therearesomepeoplewhocancalculatethedayoftheweekforanygivendatein4
A.自幼反复发作咳嗽,气急,闻到花粉后加剧B.咳嗽伴臭脓痰C.咳嗽,痰量多、分层D.肺气肿15年,剧咳后E.长期低热伴痰中带血下列疾病的表现分别属于气胸
原始凭证按填制手续及内容不同,可以分为几类?
私募基金管理人保证在募集资金前已在中国基金业协会登记为私募基金管理人,并列明管理人()。
长春宫院落的游廊有何特点?
顺从型互动是指行动者之间发生性质相同或方向一致的行动过程,常有三种形式:有意无意向他人发出信号或暗示,并引起他人反应;不经过考量,直接按照他人的方式去行动;行动者在他人压力下接受他人行动方式,并且照做。根据上述定义,下列不属于顺从型互动的是()。
【B1】【B8】
ThismonthSingaporepassedabillthatwouldgivelegalteethtothemoralobligationtosupportone’sparents.CalledastheM
Companiesneedtotake(action)______stepstoincreaseexports.
最新回复
(
0
)