首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组α1=[1,一1,2,4],α2=[0,3,1,2],α3=[3,0,7,14],α4=[1,一1,2,0],α5=[2,1,5,10],则该向量组的极大无关组为( ).
设有向量组α1=[1,一1,2,4],α2=[0,3,1,2],α3=[3,0,7,14],α4=[1,一1,2,0],α5=[2,1,5,10],则该向量组的极大无关组为( ).
admin
2019-05-10
43
问题
设有向量组α
1
=[1,一1,2,4],α
2
=[0,3,1,2],α
3
=[3,0,7,14],α
4
=[1,一1,2,0],α
5
=[2,1,5,10],则该向量组的极大无关组为( ).
选项
A、α
1
,α
2
,α
3
B、α
1
,α
2
,α
4
C、α
1
,α
2
,α
5
D、α
1
,α
2
,α
4
,α
5
答案
B
解析
把向量组中各向量排成矩阵,用初等行变换求之.
将所给向量组作为列向量组组成矩阵A,施行初等行变换,易得到
A=[α
1
T
,α
2
T
,α
3
T
,α
4
T
,α
5
T
]=
=[η
1
,η
2
,η
3
,η
4
,η
5
]=A
1
. ①
A
1
已是阶梯矩阵,共有3个阶梯,它们所含的列向量分别为η
1
;η
2
,η
3
,η
5
;η
4
每个阶梯仅取一个列向量便可得三个极大无关组:
(1)η
1
,η
2
,η
4
; (2)η
1
,η
3
,η
4
; (3)η
1
,η
5
,η
4
.
由于初等行变换仍保持原来的列向量之间的线性关系,因而原向量组的三个极大线性无关组为α
1
,α
2
,α
4
;α
1
,α
3
,α
4
;α
1
,α
5
,α
4
.于是仅(B)入选.
因一个极大线性无关组都含3个向量,该向量组的秩为3.
转载请注明原文地址:https://kaotiyun.com/show/OjV4777K
0
考研数学二
相关试题推荐
求由曲线y=4-χ与χ轴围成的部分绕直线χ=3旋转一周所成的几何体的体积.
证明:∫01χm(1-χ)ndχ=∫01χn(1-χ)mdχ,并用此式计算∫01(1-χ)50dχ.
求二次型f(χ1,χ2,χ3)=(χ1+χ2)2+(χ2-χ3)2+(χ3+χ1)2的秩,正负惯性指数p,q.
设有n元实二次型f(χ1,χ2,…,χn)=(χ1+a1χ2)2+(χ2+a2χ2)2+…+(χn-1+an-1χn)2+(χn+anχ1)2,其中a(i=1,2,…,n)为实数.试问:当a1,a2,…,an满足________条件时,二次型f为正定二次型
设函数y=y(x)由参数方程确定,其中x(t)是初值问题。
设y=f(x)是区间[0,1]上的任一非负连续函数。又设f(x)在区间(0,1)内可导,且f’(x)>,证明(I)中的x0是唯一的。
现有四个向量组①(1,2,3)T,(3,一1,5)T,(0,4,一2)T,(1,3,0)T;②(a,1,6,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,1,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
在某国,每年有比例为p的农村居民移居城镇,有比例为q的城镇居民移居农村。假设该国总人口数不变,且上述人口迁移的规律也不变。把n年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1)。求关系式中的矩阵A;
[2018年]设函数f(x)=若f(x)+g(x)在R上连续,则().
[2017年]设二阶可导函数f(x)满足f(1)=f(一1)=1,f(0)=一1,且f"(x)>0,则()
随机试题
企业建造办公大楼领用生产用原材料时,相关的增值税应借记的会计科目是()。
环磷酰胺细胞类可引起明显的骨髓抑制,应定期复查血象,当白细胞降到下列水平时,应停药
初戴全口义齿时,发现下总义齿左右撬动,加力时患者有痛感。在下述造成义齿撬动的原因中,首先考虑的原因应是
湿热熏蒸的面色是
该施工企业安全管理机构的第一责任人是()。根据施工安全技术措施计划的实施要求,下列各项中不属于安全技术交底主要内容的有()。
女职工生育享受不少于()天的产假。
根据《民事诉讼法》的规定,人民法院有权裁定终结执行的情形包括()。
RS449标准规格包括两个关于电气特性的子集标准,其中RS422是(5)。
Whyisitsodifficulttofallasleepwhenyouareovertired?Thereisnooneanswerthat【C1】______toeveryindividual.Butmany
IdentityTheftA)Identitytheftandidentityfraudaretermsusedtorefertoalltypesofcrimeinwhichsomeonewrongfullyobt
最新回复
(
0
)