首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置,证明: (Ⅰ)秩r(A)≤2; (Ⅱ)若α,β线性相关,则秩r(A)<2.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置,证明: (Ⅰ)秩r(A)≤2; (Ⅱ)若α,β线性相关,则秩r(A)<2.
admin
2020-03-05
40
问题
设α,β为3维列向量,矩阵A=αα
T
+ββ
T
,其中α
T
,β
T
分别是α,β的转置,证明:
(Ⅰ)秩r(A)≤2;
(Ⅱ)若α,β线性相关,则秩r(A)<2.
选项
答案
(Ⅰ)利用r(A+B)≤r(A)+r(B)和r(AB)≤min(r(A),r(B)),有 r(A)=r(αα
T
+ββ
T
)≤r(αα
T
)+r(ββ
T
)≤r(α)+r(β). 又α,β均为3维列向量,则r(α)≤1,r(β})≤1.故r(A)≤2. (Ⅱ)方法1°当α,β线性相关时,不妨设β=kα,则 r(A)=r(αα
T
+K
2
ββ
T
)=r[(1+k
2
)αα
T
]=r(αα
T
)≤r(α)≤1<2. 方法2°因为齐次方程组α
T
x=0有2个线性无关的解,设为η
1
,η
2
,那么 α
T
η
1
=0,α
T
η
2
=0. 若α,β线性相关,不妨设β=kα,那么 β
T
η
1
=(kα)
T
η
1
=kα
T
η
1
=0, β
T
η
2
=(kα)
T
η
2
=kα
T
η
2
=0. 于是 Aη
1
=(αα
T
+ββ
T
)η
1
=0, Aη
2
=(αα
T
+ββ
T
)η
2
=0, 即Ax=0至少有2个线性无关的解,因此n—r(A)≥2,即r(A)≤1<2.
解析
转载请注明原文地址:https://kaotiyun.com/show/OwS4777K
0
考研数学一
相关试题推荐
Ω由x=0,y=0,z=0,x+2y+z=1所围成,则三重积分等于()
设X1,X2,…,Xn是取自总体X的简单随机样本,aXi2+b是总体方差σ2的无偏估计量,则a=_______,b=_______.
设平面区域D由x=0,y=0,,x+y=1围成,若则I1,I2,I3的大小顺序为()
设级数un的部分和Sn=(un+un+1+un+2)=_______.
已知若有两个不同的三阶矩阵B和C,使AB=AC,则a=______.
曲线y=(x2-7)(-∞<x<+∞)的拐点是___________.
求,其中D是由y=x3,y=1,x=一1所围成的区域,f(u)是连续函数.
设随机变量X,Y相互独立,已知X在[0,1]上服从均匀分布,Y服从参数为1的指数分布.求(Ⅰ)随机变量Z=2X+Y,的密度函数;(Ⅱ)Cov(Y,Z),并判断X与Z的独立性.
设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点个数为
(Ⅰ)设S是球面(χ-a)2+(y-b)2+(z-c)2=R2的上半部分,取上侧,则J=χdydz+ydzdχ+zdχdy=_______;(Ⅱ)设S是球面χ2+y2+z2-2aχ-2ay-2az+a2=0(a>0为常数),则J=(χ+y+z-)
随机试题
项目型组织结构的缺点是()。
保险人的义务的有()
流动采血监控工作不包括
公司出资存在哪些问题?若丙想转让股权以退出公司,应按何种方式进行?
2009年3月,某人由中方企业委派到合资企业工作,派遣单位和雇佣单位每月分别支付其工资1400元和8000元,按照协议,个人需向派遣单位缴款3000元。该个人每月应纳的个人所得税为()。
正达会计师事务所长期以来主要开展对银行、保险公司等金融机构的年报审计业务。2007年5月初,事务所的负责人张平成正在考虑下列客户的具体情况,以保持审计业务的独立性。下面是正达会计师事务所及注册会计师与客户之间往来的相关情况:(1)A保险公司于2
已知FeSO4.7H2O晶体在加热条件下发生如下反应:2FeSO4.7H2OFe2O3+SO2↑+SO3↑+14H2O↑;如下图装置经组装后,可用来检验上述反应中所有的气体产物,请回答下列问题:用于检验SO2气体的装置是:_________(填装置的
试论述初中生人际交往的新特点。
中国绘画是以庄子哲学为精神宗旨的。其最高境界是在人与对象的双重自然状态下实现物我浑融的境界。《庄子.田子方》载,宋元君招试画师,应试者皆___________,唯有一后到者,“解衣盘礴赢”,任性自然地投身于画作。宋元君称此人为“真画者”。所谓“真画者”,是
数据访问页中主要用来显示描述性文本信息的是()。
最新回复
(
0
)