首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D0是单连通区域,点M0∈D0,D=D0\{M0}(即D是单连通区域D0除去一个点M0),若p(x,y),Q(x,y)在D有连续的一阶偏导数且((x,y)∈D),问: (Ⅰ)∫LPdx+Qdy是否一定在D上与路径无关; (Ⅱ)若又存在一条环绕M0的分段光
设D0是单连通区域,点M0∈D0,D=D0\{M0}(即D是单连通区域D0除去一个点M0),若p(x,y),Q(x,y)在D有连续的一阶偏导数且((x,y)∈D),问: (Ⅰ)∫LPdx+Qdy是否一定在D上与路径无关; (Ⅱ)若又存在一条环绕M0的分段光
admin
2016-10-26
65
问题
设D
0
是单连通区域,点M
0
∈D
0
,D=D
0
\{M
0
}(即D是单连通区域D
0
除去一个点M
0
),若p(x,y),Q(x,y)在D有连续的一阶偏导数且
((x,y)∈D),问:
(Ⅰ)∫
L
Pdx+Qdy是否一定在D上与路径无关;
(Ⅱ)若又存在一条环绕M
0
的分段光滑闭曲线C
0
使得∫
C
0
Pdx+Qdy=0,∫
L
Pdx+Qdy)是否一定在D上与路径无关.
选项
答案
(Ⅰ)这里D不是单连通区域,所以不能肯定积分∫
L
PdX+Qdy在D上与路径无关.例如:积分[*],由于P(x,y)=[*]则 [*] 即在全平面除原点外P(x,y),Q(x,y)均有连续的一阶偏导数,且[*]. 但若取L为C
+
即逆时针方向的以原点为圆心的单位圆周,则 [*][-sinθ(cosθ)′+cosθ(sinθ)′]dθ=2π≠0, 因此,该积分不是与路径无关. (Ⅱ)能肯定积分在D上与路径无关.按挖去奇点的思路,我们作以M
0
为心,ε>0为半径的圆周C
ε
,使C
ε
在C
0
所围区域内.C
ε
和C
ε
所围区域记为D
ε
(见图10.10).在D
ε
上用格林公式得 [*] [*] 其中C
0
,C
ε
均是逆时针方向.所以 [*] 因此,ε>0充分小,只要C
ε
在C
0
所围区域内,均有 [*]Pdx+Qdy=0.① 现在我们可证:对D内任意分段光滑闭曲线C,均有 ∮
C
Pdx+Qdy=o. ② 若C不包围M
0
,在C所围的区域上用格林公式,立即可得②式成立.若C包围M
0
点,则可作以M
0
为心,ε>0为半径的小圆周C
ε
,使得C
ε
在C所围区域内且①成立.在C与C
ε
所围的区域上用格林公式同理可证 ∫
C
Pdx+Qdy=[*]Pdx+Qdy=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/P2u4777K
0
考研数学一
相关试题推荐
[*]
c
求下列函数的导数:
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
设有级数,则该级数的收敛半径为________.
(2009年试题,17)椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕轴旋转而成.求S1及S2的方程;
商店出售10台洗衣机,其中恰有3台次品.现已售出一台洗衣机,在余下的洗衣机中任取两台发现均为正品.则原先售出的一台是次品的概率为
微分方程(1-x2)y-xy’=0满足初值条件y(1)=1的特解是________
随机试题
明细分类科目
A、巴布剂B、糊剂C、黑膏药D、软膏E、橡胶膏剂将药物溶解或混合于水溶性高分子材料基质中,摊涂在裱背材料上,供皮肤贴敷的外用剂型是
为确定悬臂浇筑段前段标高,施工过程中应加强监测,但监测项目不包括()。
基坑开挖前,应根据()、施工方法、施工工期和地面荷载等资料,制定基坑施工方案。
B公司2月份生产甲产品1000件,销售900件,其成本资料详如下表所示。 假设:为简化起见,假定这里的变动非生产成本均为变动销售费用,其总额随销售量变动而成正比例变动。 要求:(1)分别采用完全成本法和变动成本法确定期间成本和单位产品的生产成本
认知失调论认为,认知失调可能的原因有()。
【2013年德州市市直】“要尽可能多地要求一个人,也要尽可能多地尊重一个人”所体现的德育原则是()。
19世纪40年代,马克思主义产生于西欧,英、法、德三国是其发源地。它批判地继承和吸收了人类自然科学、思维科学和社会科学的优秀成果,特别是18世纪中叶和19世纪上半叶的社会科学和自然科学的成果。其主要理论来源包括()
OfallthetruthsthatthisgenerationofAmericansholdself-evident,fewaremoredeeplyembeddedinthenationalpsychethan
Whatisthetalkmainlyabout?
最新回复
(
0
)