首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y,z)连续,∑为曲面2z=x2+y2位于z=2与z=8之间部分的上侧,计算[yf(x,y,z)+x]dydz十[xf(x,y,z)+y]dzdx+[2xyf(x,y,z)+z]dxdy.
设f(x,y,z)连续,∑为曲面2z=x2+y2位于z=2与z=8之间部分的上侧,计算[yf(x,y,z)+x]dydz十[xf(x,y,z)+y]dzdx+[2xyf(x,y,z)+z]dxdy.
admin
2018-05-21
71
问题
设f(x,y,z)连续,∑为曲面2z=x
2
+y
2
位于z=2与z=8之间部分的上侧,计算
[yf(x,y,z)+x]dydz十[xf(x,y,z)+y]dzdx+[2xyf(x,y,z)+z]dxdy.
选项
答案
曲面2z=x
2
+y
2
上任一点(x,y,z)指向上侧的法向量为n={-x,-y,1},法向量的方向余弦为 [*] 则[*][yf(x,y,z)+x]dydz+xf(x,y,z)+y]dzdx+[2xyf(x,y,z)+z]dxdy =[*]([yf(x,y,z)+x]cosα+[xf(x,y,z)+y]cosβ+[2xyf(x,y,z)+z]cosγ}dS [*] 所以原式=-1/2[*](x
2
+y
2
)dxdy=-1/2∫
0
2π
dθ∫
2
4
r
3
dr=-60π.
解析
转载请注明原文地址:https://kaotiyun.com/show/POr4777K
0
考研数学一
相关试题推荐
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x).
设f(x)在[a,b]上有二阶连续导数,证明∫abf(x)dx=∫abf"(x)(x一a)(x一b)dx.
已知f(x)在[0,2]上连续,在(0,2)内二阶可导,且∫12f(x)dx=f(2).证:ε∈(0,2),使f’(ε)+f"(ε)=0.
设齐次线性方程组(Ⅰ)为又已知齐次线性方程组(Ⅱ)的基础解系为α1=(0,1,1,0)T,α2=(-1,2,2,1)T.试问a,b为何值时,(Ⅰ)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
设为BX=0的解向量,且AX=α3有解求BX=0的通解
椭球面∑1是椭圆绕x轴旋转而成,圆锥面∑2是由过点(4,0)且与椭圆相切的直线绕x轴旋转而成求位于∑1及∑1之间的立体体积
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)1x2的秩为2.(I)求a的值;(Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形;(III)求方程f(x1,x2,x3)=0的解.
设f(x)在x=0的邻域内二阶连续可导,=2,求曲线y=f(x)在点(0,f(0))处的曲率.
设质点P沿以为直径的下半圆周,从点A(1,2)运动到B(3,4)的过程中,受变力F的作用,F的大小等于点P到原点O之距离,方向垂直于线段,与y轴正向的夹角小于,求变力F对质点P做的功.
现有k个人在某大楼的一层进入电梯,该楼共n+1层.电梯在任一层时若无人下电梯则电梯不停(以后均无人再入电梯).现已知每个人在任何一层(当然不包括第一层)下电梯是等可能的且相互独立,求电梯停止次数的平均值.
随机试题
A.AMYB.ALTC.GGTD.ACPE.ALP对慢性酒精中毒敏感的是
施工现场的给排水条件属于影响施工质量环境因素中的()。
出口收汇核销是在出口退税工作之后的一项工作。()
对于行政单位购置的纳入政府采购范围的资产,()应当对购置资产进行验收、登记。
Spousesofemployeesarewelcome________notrequiredtoparticiPateinthecompany’ssocialevents.
群体发展的最高阶段是()
根据以下资料,回答下列问题。第五次全国人口普查以2000年11月1日零时为标准时点,S省常住人口34714835人,根据《全国人口普查条例》和国务院的决定,我国在2010年又以11月1日零时为标准时点进行了第六次全国人口普查。下面是该省常住人口的地区分布
由于受金融危机影响,与客户的一个合同无法执行,公司派你去和客户沟通,你该如何做?
(1)在考生文件夹下,有一个数据库“school”,其中有数据库表“student”“score”和“course”。在表单向导中选取“一对多表单向导”创建一个表单。要求:从父表“student”中选取字段“学号”和“姓名”,从子表“score”中选取字段
Hearingwewill______candies,thechildrensuddenlygatheraroundus.
最新回复
(
0
)