首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设[*5问a,b为何值时,β1,β2能同时由α1,α2,α3线性表出.若能表出时,写出其表出式; (Ⅱ)设问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
(I)设[*5问a,b为何值时,β1,β2能同时由α1,α2,α3线性表出.若能表出时,写出其表出式; (Ⅱ)设问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
admin
2014-09-22
85
问题
(I)设[*5问a,b为何值时,β
1
,β
2
能同时由α
1
,α
2
,α
3
线性表出.若能表出时,写出其表出式;
(Ⅱ)设
问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
选项
答案
(1)对增广矩阵[A|B]作初等行变换,得[*]①A≠3,b任意,β
1
,β
2
均可由α
1
,α
2
,α
3
线性表出,且表出法唯一.Aξ
1
=β
1
的解为x
1
=一3,x
2
=2,x
3
=0,即β
1
=一3α
1
+2α
2
.Aξ
2
=β
2
的解为[*]即[*]其中a≠3,b足任意常数.②a=3,b=1有无穷多解.β
1
,β
2
均可由α
1
,α
2
,α
3
线性表出且表出法无穷多.Aξ
1
=β
1
,有解k
1
[1, 2,1]
T
+[-2,0,1]
T
其中k
1
是任意常数.Aξ
2
=β
2
,有解是k
2
[1,一2,1]
T
+[1,0,0]
T
,其中k
2
是仟意常数. (Ⅱ)由(I)知。①当a≠3,b任意时,AX=B有唯一解,且[*] ②当a=3,b=1时,AX=B有无穷多解,且得[*]其中k
1
,k
2
是任意常数.
解析
(I)β
1
,β
2
可同时由α
1
,α
2
,α
3
线性表出,则a
1
x
1
+a
2
x
2
+a
3
x
3
=β
i
,i=1,2,方程都有解.
(Ⅱ)方程AX=B,将AX=B以列分块,设X=[ξ
1
,ξ
2
].B=[β
1
,β
2
]即A[ξ
1
,ξ
2
]=[β
1
,β
2
]
有解
;Aξ
1
=β
1
且Aξ
2
=β
2
有解.
转载请注明原文地址:https://kaotiyun.com/show/Pq54777K
0
考研数学一
相关试题推荐
设函数f(x)在区间[0,1]上二阶可导,f(0)=0,且f(1)=1,证明:存在ξ∈(0,1),使得ξf"(ξ)+(1+ξ)f’(ξ)=1+ξ.
设f(x)在区间[0,+∞)内具有二阶导数,且|f(x)|≤1,0<|f"(x)|≤2(0≤x<+∞),证明|f’(x)|≤.
设f(u)为(-∞,+∞)上的连续函数,a为常数,则下述积分为x的偶函数的是()。
设M=cos6xdx,N=(sin3x+cos6x)dx,P=(x2sin3x-cos6x)dx,则()。
若函数f(x)=(x-1)(x-2)(x-3)(x-4),则f’(x)的零点的个数为()。
证明不等式:当x∈时,x<tanx.
证明不等式.
对称矩阵为正定矩阵的充分必要条件是________.
设向量组α1=[a11,a21,…an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,…,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(唯一零解).
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组Bx=0和ABx=0是同解方程组的一个充分条件是().
随机试题
A.清创,一期缝合B.清创,延期缝合C.清创后不予缝合D.清创及植皮E.无须清创
A.右下腹痛伴咳嗽、胸痛B.右上腹钻顶样疼痛,局部深压痛C.腹痛伴呕吐,腹胀,X线见肠腔内有半月形液平面D.右上腹痛阵发加剧局部腹膜刺激征E.上腹突然剧痛,明显的腹膜刺激征
请问“工具、器具及生产家具购置费,是指按照有关规定,为保证新建或扩建项目初期正常生产必须购置的没有达到固定资产标准的设备、仪器、工卡模具、器具、生产家具等的购置费用。”如果达到固定资产标准该计入哪种费用?
有关地震的表述下列()正确。
下列关于最低工资立法的经济学分析,正确的是()。
培训需求分析的模型包括()。
小张将带领三位专家到当地B单位调研,距离B单位1.44千米处设有地铁站出口。调研工作于上午9点开始,他们需提前10分钟到达B单位,则小张应通知专家最晚几点一起从地铁站出口出发,步行前往B单位?(假设小张和专家的步行速度均为1.2米/秒)
[2005年]设函数u(x,y)=φ(x+y)+φ(x—y)+∫x-yx+yΨ(t)dt,其中φ具有二阶导数,Ψ具有一阶导数,则必有().
Lookatthechartbelow.ItshowstheGDPsofthreecountriesduring8years.Whichyeardoeseachsentencebelowthechartdesc
Whatdoconsumersreallywant?That’saquestionmarketresearcherswouldlovetoanswer.Butsincepeopledon’talwayssaywhat
最新回复
(
0
)