首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为三阶单位矩阵。 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2018-04-12
103
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为三阶单位矩阵。
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
Bα
1
=(A
5
一4A
3
+E)α
1
=λ
1
5
α
1
—4λ
1
3
α
1
+α
1
=(λ
1
5
一4λ
1
3
+1)α
1
=一2α
1
, 则α
1
是矩阵B的属于一2的特征向量。 同理可得 Bα
2
=(λ
2
5
一4λ
2
3
+1)α
2
=α
2
, Bα
3
=(λ
3
5
一4λ
3
3
+1)α
3
=α
3
。 所以B的全部特征值为一2,1,1。 设B的属于1的特征向量为α
2
=(x
1
,x
2
,x
3
)
T
,显然B为对称矩阵,根据不同特征值所对应的特征向量正交可得α
1
T
α
2
=0,即x
1
一x
2
+x
3
=0。解方程组可得B的属于1的特征向量为α
2
=k
1
(1,0,一1)
T
+k
2
(1,1,0)
T
,其中k
1
,k
2
为不全为零的任意常数。故B的属于一2的特征向量为 k
3
(1,一1,1)
T
,其中k
3
是不为零的常数。
解析
考查的是特征值和特征向量的定义。矩阵B实际上是关于矩阵A的多项式,它们有相同的特征向量,利用Aα
i
=λ
i
α
i
可以直接计算Bα
1
,Bα
2
,Bα
3
,进而求出矩阵B的特征值。
转载请注明原文地址:https://kaotiyun.com/show/Pxk4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 B
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设函数y=y(x)由方程2xy=x+y所确定,则=________.
设其中g(x)是有界函数,则f(x)在x=0处
求极限
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0证明在[-a,a]上至少存在一点η,使。
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
已知向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
计算下列定积分.
求f(x)=的连续区间、间断点并判别其类型.
随机试题
陷窝细胞对哪种类型的霍奇金淋巴瘤具有诊断意义
易变色又易散失气味的药物是
在建项目投资总规模由()组成。
某国有企业2002年开始经营,当年亏损20万元,2003年度盈利5万元,2004年度亏损3万元,2005年度亏损10万元,2006年度盈利10万元,2007年度盈利6万元,2008年度盈利30万元,则该企业2008年度的应纳税所得额为()。
引起货币供给过度的原因包括()。
在新型师生关系中,学生是“平等中的首席”。()
一、注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出问题和解决问题能力、文字表达能力的测试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定资料,按照后面提出的“作答要求”依次作答。二、给定资料
Writeanessayof160~200wordsbasedonthefollowingdrawing.Inyouressay,youshould1)describethedrawingbriefly,
数据流图中带有箭头的线段表示的是
Concernsafewyearsagothatstudentswouldbeforcedtousestimulantsinthefightforclassrankandhonorsthusseemtobe
最新回复
(
0
)