首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)由yexy+xcosx-1=0确定,求dy|x=0=_______.
设y=y(x)由yexy+xcosx-1=0确定,求dy|x=0=_______.
admin
2020-03-10
96
问题
设y=y(x)由ye
xy
+xcosx-1=0确定,求dy|
x=0
=_______.
选项
答案
-2dx
解析
当x=0时,y=1,将ye
xy
+xcosx-1=0两边对x求导得
将x=0,y=1代入上式得
=-2,故dy|
x=0
=-2dx.
转载请注明原文地址:https://kaotiyun.com/show/Q4A4777K
0
考研数学二
相关试题推荐
[*]
设4阶行列式的第2列元素依次为2,m,k,3,第2列元素的余子式依次为1,—1,1,—1,第4列元素的代数余子式依次为3,1,4,2,且行列式的值为1,则m,k的取值为()
设矩阵A与B相似,且求a,b的值。
设α=(1,—1,a)T,β=(1,a,2)T,A=E+αβT,且λ=3是矩阵A的特征值,则矩阵A属于特征值λ=3的特征向量是________。
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关。当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设α1,α2,α3是3维向量空间R3的一组基,则由基α1,到基α1+α2,α2+α3,α3+α1的过渡矩阵为()
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(—1,2,2,1)T。问线性方程组(1),(2)是否有非零公共解?若有,则求出所有非零公共解;若没有,说明理由。
[20l5年]已知函数f(x)在区间[a,+∞]上具有2阶导数,f(a)=0,f′(x)>0,f″(0)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
(1998年试题,五)利用代换y’’cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解
设当x→0时,(1一cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比(ex2一1)高阶的无穷小,则正整数n等于()
随机试题
我国协商民主的基本形式是()
西部某市为加快发展决定下大力引进高层次人才,到北京召开了博士生的招聘会。公布的条件是:凡理工科博士到该市工作的,给10万元安家费,并享受公务员副处级的工资;市政府出面签订长期就业合同;吸收为在当地起政府顾问性的“专家协会”的核心会员;给予副处级行政职务或相
男,45岁,腹胀乏力3年。查体:肝肋下1.5cm,双侧乳房增大,轻压痛,未触及肿块。双侧腋窝淋巴结和锁骨上淋巴结无肿大。导致乳房增大最可能的原因是
湖北武汉一家企业对外出口一批摩托车,经转关至深圳罗湖口岸装船出境,该笔业务对外收汇45万美元,根据我国现行的外汇管理规定,该企业应该向深圳市外汇管理局申领“出口收汇核销单”,并按规定办理相应的出口收汇核销手续。()
下列不属于民事法律行为必须具备的条件的是()。
“一物不能有二主”体现了物权的:
因为市场经济的过度侵蚀,一些媒体已经越来越被市场________,不再具有公共属性,自然也很难提供有价值的公共产品,所以________世界的力量越来越弱。曾经充斥传媒业的理想主义,也在现实面前________了踪迹。填入划横线部分最恰当的一项是:
Whatdoesthelecturemainlyconcern?
1.TheNationalFinanceSectionannouncedtodaythatitisloweringthe______onsavingsbonds.2.The______pointdeclineto6%
《红楼梦》(ADreamofRedMansions)写成于18世纪,是中国著名的古典长篇小说。小说共计120回,前80回的作者是曹雪芹,后40回由高鹗完成。通过对贾氏封建大家族(feudalclan)生活的生动描述,《红楼梦》展示了清朝(the
最新回复
(
0
)