首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2019-03-21
70
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),其中α
1
,α
2
,α
3
,α
4
均为4维列向量,且α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
由α
2
,α
3
,α
4
线性无关和α
1
=2α
2
一α
3
知矩阵A的秩为3,因此Ax=0的基础解系中只有一个解向量. 由α
1
一2α
2
+α
3
+0α
4
=0得 [*] 即齐次线性方程组Ax=0的基础解系为[*] 再由[*] 知[*] 为非齐次线性方程组Ax=β的一个特解,于是Ax=β的通解为 [*]
解析
本题考查抽象非齐次线性方程组的求解问题.所涉及的知识点是
(1)向量组线性相关性的判定.
向量组α
1
,α
2
……α
m
线性相关
向量组中至少有一个向量能用其余的m—1个向量线性表示;若α
1
,α
2
……α
r
线性相关,则α
1
,…,α
r
,α
r+1
…,α
m
仍线性相关.
(2)向量组极大无关组和秩概念.
r(A)=A的列秩=A的行秩.
(3)未知数的个数(n)一系数矩阵的秩r(A)=基础解系解向量的个数.
(4)非齐次线性方程组通解的结构.
若Ax=0的系数矩阵A的秩r(A)=r,则Ax=b通解x=k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
…+η
*
.
转载请注明原文地址:https://kaotiyun.com/show/QLV4777K
0
考研数学二
相关试题推荐
函数z=f(x,y)在点(x0,y0)处连续是它在该点偏导数存在的()
设f(x)在(a,+∞)内可导,求证:(Ⅰ)若x0∈(a,+∞),f’(x)≥α>0(x>x0),则=+∞;(Ⅱ)若=A>0,则=+∞.
求下列极限:
证明函数恒等式arctanx=,x∈(-1,1).
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
若行列式的第j列的每个元素都加1,则行列式的值增加.
设A是n阶实反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
设A是m×n矩阵,B是n×m矩阵,则()
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为.①求A.②证明A+E是正定矩阵.
随机试题
孕妇,30岁,G1P0,孕35周,胎方位LSA,胎心率144次/分,监测胎儿宫内安危的最简易方法是
在编制一般工艺钢结构预制安装工程措施项目清单时,当拟建工程中有工艺钢结构预制安装,有工业管道预制安装,可列项的是()。
路基填筑前应按照设计文件要求对地基或基底面进行处理,选择具有代表性的地段,进行填筑压实工艺性试验,确定主要工艺参数,并报()确认。
先于一定的活动而又指向该活动的一种动力准备状态称为()
新的教育本质观认为,教育不仅具有文化传承的功能,更应该有培养()的功能。
马克思主义认为,人的全面发展的真正实现是在()
维罗纳会议
在面向对象设计中,基于父类创建的子类具有父类所有的属性与方法,这一特点成为类的_____。A.封装性B.多态性C.重用性D.继承性
Canyouletme______homealittleearlier?
Thisisasetofrecommendationsfor______.Accordingtotheadvicegivenaboutwomenexpectingbabies,______.
最新回复
(
0
)