首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组.则( )正确.
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组.则( )正确.
admin
2017-11-23
38
问题
设η
1
,η
2
,η
3
为3个n维向量,AX=0是n元齐次方程组.则( )正确.
选项
A、如果η
1
,η
2
,η
3
都是AX=0的解,并且线性无关,则η
1
,η
2
,η
3
为AX=0的一个基础解系
B、如果η
1
,η
2
,η
3
都是AX=0的解,并且r(A)=n一3,则η
1
,η
2
,η
3
为AX=0的一个基础解系
C、如果η
1
,η
2
,η
3
等价于AX=0的一个基础解系则它也是AX=0的基础解系
D、如果r(A)=n一3,并且AX=0每个解都可以用η
1
,η
2
,η
3
线性表示,则η
1
,η
2
,η
3
为AX =0的一个基础解系
答案
D
解析
A缺少n—r(A)=3的条件.B缺少η
1
,η
2
,η
3
线性无关的条件.C例如η
1
,η
2
是基础解系η
1
+η
2
=η
3
,则η
1
,η
2
,η
3
和η
1
,η
2
等价,但是η
1
,η
2
,η
3
不是基础解系.
要说明D的正确,就要证明η
1
,η
2
,η
3
都是AX=0的解,并且线性无关.方法如下:
设α
1
,α
2
,α
3
是AX=0的一个基础解系,则由条件,α
1
,α
2
,α
3
可以用η
1
,η
2
,η
3
线性表示,于是
3≥r(η
1
,η
2
,η
3
)=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)≥r(α
1
,α
2
,α
3
)=3,
则 r(η
1
,η
2
,η
3
)=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)=3,
于是η
1
,η
2
,η
3
线性无关,并且和α
1
,α
2
,α
3
等价,从而都是AX=0的解.
转载请注明原文地址:https://kaotiyun.com/show/R8r4777K
0
考研数学一
相关试题推荐
[*]
[*]
在第一象限的椭圆,使过该点的法线与原点的距离最大.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
将函数f(x)=x一1(0≤x≤2)展开成周期为4的余弦级数.
从装有1个白球、2个黑球的罐子里有放回地取球,记这样连续取5次得样本X1,X2,X3,X4,X5.记Y=X1,X2,…,X5,求:(1)y的分布律,E(y),E(Y2);(2),E(S2)(其中,S2分别为样本X1,X
假设有四张同样的卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有α1,α2,α3.现在随意抽取一张卡片,令Ak={卡片上印有ak)。证明:事件A1,A2,A3两两独立但不相互独立.
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放入这十个空盒中,设每个球放入任何一个盒子的可能性都是一样的,并且每个空盒可以放五个以上的球,计算下列事件的概率:C=“某个指定的盒子不空”.
求下面线性方程组的解空间的维数:并问ξ1=[9,一1,2,一1,1]T是否属于该解空间.
设f(x)=,f[φ(x)]=1一x且φ(x)≥0,求φ(x)及其定义域.
随机试题
在Excel2000中,下列输入数据属于字符型的是______。
在Excel2010中,选取整个工作表的方法是__________。
CK测定中,推荐使用的激活剂是
达稳态血药浓度的分数表示是零级滴注速度的表示是
下列国际工程保险项目中,( )可以计入直接费中。
就成本预测而言,单一回归不同于多元回归,这是因为单一回归只使用
关于商品使用价值的说法,正确的是()。
效度的评估方法()。
TheMuseumofChildhoodThereare4,000toysinLondon’sMuseumofChildhood,butitisnotessentialtobeachildtoenjo
Memoryisourmostimportantpossession.Withoutmemory,youwouldn’tknowwhoyouare.Youcouldn’tthinkaboutthepastorpla
最新回复
(
0
)