首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求z=x2y(4-x-y)在区域D={(x,y)|x+y≤6,x≥0,y≥0}上的最值.
求z=x2y(4-x-y)在区域D={(x,y)|x+y≤6,x≥0,y≥0}上的最值.
admin
2016-01-23
40
问题
求z=x
2
y(4-x-y)在区域D={(x,y)|x+y≤6,x≥0,y≥0}上的最值.
选项
答案
由[*] 得D内的驻点为x=2,y=1,其函数值为z|
(2,1)
=4. 在D的边界曲线x轴、y轴上都有z=0. 在D的边界曲线z+y=6上,因y=6 x(0≤x≤b),代入函数x中,得z=x
2
(6-x).(-2)-2x
3
-12x
2
. 由[*]=6x
2
-24x=6x(x-4)=0 得驻点为x
1
=0(舍),x
2
=4,此时y
2
解析
本题考查求二元函数在区域D上的最值问题,先求区域D内的驻点,再求D的边界曲线z轴、Y轴及直线x+y=6上的极值点,计算出这些点处的函数值,比较大小可得.
注:对于求多元函数在闭区域D上的最值问题,在求出驻点后一般不需判断驻点处是否取得极值,只需计算出这些点处的函数值,比较大小即可.
转载请注明原文地址:https://kaotiyun.com/show/RRw4777K
0
考研数学一
相关试题推荐
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=,求方程组AX=b的通解.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数;(2)求方程组AX=0的通解.
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,-1,3,0)T,则A*X=0的基础解系为().
设A为n阶可逆矩阵,A2=|A|E.证明:A=A*.
设n阶矩阵A满足A2+2A-3E=0.求:(1)(A+2E)-1;(2)(A+4E)-1.
设函数y=f(x)二阶可导,f’(x)≠0,且与x=ψ(y)互为反函数,求ψ"(y).
设平面区域D={(x,y)|1/4≤x2+y2≤1,x≥0,y≥0},记则()
A、2B、C、D、πC先作代换将反常积分化为定积分计算.如积分区间为对称区间,为简化计算,还应考察被积函数或其子函数的奇偶性.解
求函数f(x,y)=xy一x一y在由抛物线y=4—x2(x≥0)与两个坐标轴所围成的平面闭区域D上的最大值和最小值。
求函数y=(x-1)的单调区间与极值,并求该曲线的渐近线.
随机试题
项目型组织结构的缺点是()。
保险人的义务的有()
流动采血监控工作不包括
公司出资存在哪些问题?若丙想转让股权以退出公司,应按何种方式进行?
2009年3月,某人由中方企业委派到合资企业工作,派遣单位和雇佣单位每月分别支付其工资1400元和8000元,按照协议,个人需向派遣单位缴款3000元。该个人每月应纳的个人所得税为()。
正达会计师事务所长期以来主要开展对银行、保险公司等金融机构的年报审计业务。2007年5月初,事务所的负责人张平成正在考虑下列客户的具体情况,以保持审计业务的独立性。下面是正达会计师事务所及注册会计师与客户之间往来的相关情况:(1)A保险公司于2
已知FeSO4.7H2O晶体在加热条件下发生如下反应:2FeSO4.7H2OFe2O3+SO2↑+SO3↑+14H2O↑;如下图装置经组装后,可用来检验上述反应中所有的气体产物,请回答下列问题:用于检验SO2气体的装置是:_________(填装置的
试论述初中生人际交往的新特点。
中国绘画是以庄子哲学为精神宗旨的。其最高境界是在人与对象的双重自然状态下实现物我浑融的境界。《庄子.田子方》载,宋元君招试画师,应试者皆___________,唯有一后到者,“解衣盘礴赢”,任性自然地投身于画作。宋元君称此人为“真画者”。所谓“真画者”,是
数据访问页中主要用来显示描述性文本信息的是()。
最新回复
(
0
)