首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求f(x,y,z)=2x+2y一z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
求f(x,y,z)=2x+2y一z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
admin
2015-12-22
62
问题
求f(x,y,z)=2x+2y一z
2
+5在区域Ω:x
2
+y
2
+z
2
≤2上的最大值与最小值.
选项
答案
求解条件最值应用问题的方法和步骤如下: (1)由实际问题找出目标函数与约束条件; (2)构造拉格朗日函数,用拉格朗日乘数法求解,转化为求拉格朗日函数的驻点.根据实际问题知,条件最大值或条件最小值存在,由求得的驻点可得相应的最值. 证 f(x,y,z)在有界闭区域Ω上连续,一定存在最大值、最小值. 第一步,先求f(x,y,z)在Ω上的驻点. 由[*]得f(x,y,z)在Ω上无驻点,因此f(x,y,z)在Ω上的最大值、最小值都只能在Ω的边界上达到. 第二步,求f(x,y,z)在Ω的边界x
2
+y
2
+z
2
=2上的最大值、最小值. 令F(x,y,z,λ)=2x+2y—z
2
+5+λ(x
2
+y
2
+z
2
一2),解方程组 [*] 由式①、式②得x=y;由式③得z=0或λ=1.将x=y,z=0代入式④得 x=y=±1, z=0. 当λ=1时,由式①、式②、式④也得 x=y=一1, z=0. 因此得驻点P
1
(一1,一1,0)与P
2
(1.1,0).经计算得知f(P
1
)=1,f(P
2
)=9. 因此,f(x,y,z)在Ω上的最大值为9,最小值为1.
解析
转载请注明原文地址:https://kaotiyun.com/show/S5bD777K
0
考研数学二
相关试题推荐
不少作家的书名是从前人的佳辞名句化用而来的,下列对应不正确的是()。
五四运动前后,李大钊宣传介绍俄国革命和马克思主义的主要著作有()。
挂在墙壁上的石英钟,当电能耗尽而停止走动时,其秒针往往会停在哪个数字上?()
在读屏时代,从倡导多读多写汉字的角度,“汉字听写”无疑是一件好事,但是一旦过度,好事也会变成坏事。比如,比赛偏重冷僻字词,参赛小选手们只能强化记忆.在比赛中展示了“中国式教育”。就连汉字拼音之父周有光先生也认为,现在把通用汉字增加到8000多个,这个数量实
设f(χ)为[-a,a]上的连续的偶函数且f(χ)>0,令F(χ)=∫-aa|χ-t|f(t)dt..(Ⅰ)证明:F′(χ)单调增加.(Ⅱ)当χ取何值时,F(χ)取最小值?(Ⅲ)当F(χ)的最小值为f(a)-a2-1时,求函数f(χ).
设A为三阶矩阵,A的三个特征值为λ1=-2,λ2=1,λ3=2,A*是A的伴随矩阵,则A11+A22+A33=_______.
设f(χ)二阶可导,且f(0)=0,令g(χ)=(Ⅰ)确定a的取值,使得g(χ)为连续函数;(Ⅱ)求g′(χ)并讨论函数g′(χ)的连续性.
在方程组中a1+a2一b1+b2,证明该方程组有解,并求出其通解.
设f(x)=x4sin+xcosx(x≠0),且当x=0时,f(x)连续,则()
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且试证:存在使f(η)=η
随机试题
下列选项中属于因果关系的是()
产后出血的最主要原因是
糖尿病是一组以高血糖为特征的代谢性疾病。高血糖则是由于胰岛素分泌缺陷或其生物作用受损,或两者兼有引起。糖尿病时长期存在的高血糖,导致各种组织,特别是眼、肾、心脏、血管、神经的慢性损害、功能障碍。目前尚无根治糖尿病的方法,但通过多种治疗手段可以控制好糖尿病。
中医学里的脏腑,除了指解剖的实质脏器,更重要的是对人体生理功能和病理变化的概括。中医学认为,人的有机整体是以五脏为核心构成的一个极为复杂的统一体,它以五脏为主,配合六腑,以经络作为网络,联系躯体组织器官,形成5大系统。利小便而实大便的理论依据是
调整盘盈或盘亏财产的账面价值时,处理前“待处理财产损溢”的借方余额反映()。
下列关于独立估计的说法中,错误的有()。
学生干部选举前,有的家长给班主任陈老师送束花要求照顾,陈老师拒绝。这件事体现了陈老师()。
阅读下面的文言文,完成下列例题。张佶,字仲雅,本燕人,后徙华州渭南。初名志言,后改焉。父防,殿中少监。佶少有志节,始用荫补殿前承旨,以习儒业,献文求试,换国子监丞。迁著作佐郎、监三白渠、知泾阳县。端拱初,为太子右赞善大夫。曹州民有被诬杀人者,诏往
Whoisthespeaker?
IntargetingconsumerswhatPepsicallsthe"PowerofOne"makesperfectsense:it’sallaboutmakingsure.thateverybodywhob
最新回复
(
0
)