首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+t α4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的一个基础解系。
已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+t α4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2,β3,β4也是Ax=0的一个基础解系。
admin
2014-06-15
77
问题
已知α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+t α
4
,β
4
=α
4
+tα
1
,讨论实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也是Ax=0的一个基础解系。
选项
答案
由于β
1
,β
2
,β
3
,β
4
均为α
1
,α
2
,α
3
,α
4
的线性组合,所以β
1
,β
2
,β
3
,β
4
均为Ax=0的解.下面证明β
1
,β
2
,β
3
,β
4
线性无关.设k
1
β
1
,k
2
β
2
,k
3
β
3
,k
4
β
4
=0,即(k
1
+tk
4
)α
1
+(tk
1
+k
2
)α
1
+(tk
2
+k
3
)α
1
+(tk
3
+k
4
)α
4
=0, 由于α
1
,α
2
,α
3
,α
4
线性无关,因此其系数全为零,即 [*]=1-t
4
可见,当1-t
4
≠0,即t≠±1时,上述方程组只有零解k
1
=k
2
=k
3
=k
4
=0,因此向量组β
1
,β
2
,β
3
,β
4
线性无关,又因Ax=0的基础解系是4个向量,故β
1
,β
2
,β
3
,β
4
也是Ax=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/SD34777K
0
考研数学二
相关试题推荐
设f(x)连续,且f(0)=0,f’(0)=2,求极限。
设f(x)∈c[a,6],在(a,b)内二阶可导(Ⅰ)若fA=0,fB<0,f’+A>0.证明:存在ζ∈(a,6),使得f(ζ)f"(ζ)+f’2(n)=0;(Ⅱ)若fA=fB=∫abf(x)dx=0,证明:存在η∈(a,b),使得f”
在抛物线y=ax2+bx+c上,x=___________处曲率最大.
设函数在x=0可导,求常数a和b的值.
已知函数y=f(x)在(一∞,+∞)上具有二阶连续的导数,且其一阶导函数f′(x)的图形如图3-1所示,则曲线y=f(x)的拐点是_________.
对于任意的实数p和q,函数f(x)=x2+px+q在[1,3]上满足拉格朗日中值定理的ξ=().
设A是三阶矩阵,α1,α2,α3为三维列向量且α1≠0,若Aα1=α1,Aα2=α1+α2,Aα3=α2+α3。(Ⅰ)证明:向量组α1,α2,α3线性无关;(Ⅱ)证明:A不可相似对角化。
设随机变量X,Y独立,且X~E(1/2),Y的概率密度为fY(y)=则D(XY)=________。
设总体X的概率分布为利用来自总体的样本值1,3,2,2,1,3,1,2,可得θ的最大似然估计值为()
(2010年试题,8)设A为四阶实对称矩阵,且A2+A=0,若A的秩为3,则A相似于().
随机试题
下列关于中外合资经营企业董事会会议的说法错误的有
喹诺酮类药物的作用机制
根据《中华人民共和国药品管理法》,开办药品经营企业必须具备的条件包括
《测绘法》规定,外国的组织或者个人在中华人民共和国领域或者管辖的其海域从事测绘活动,必须经()批准,并遵守中华人民共和国有关法律、行政法规的规定。
下列属于目前财政部规定的快速折旧法的是()。
甲股份有限公司(以下简称“甲公司”)于20×5年开始对高管人员进行股权激励。具体情况如下:(1)20×5年1月2日,甲公司与50名高管人员签订股权激励协议并经股东大会批准。协议约定:甲公司向每名高管授予120000份股票期权,每份期权于到期日可以8元/股
岑参在《白雪歌送武判官归京》一诗中,用“________,________。”的诗句,写出了朋友身影已经消失,诗人还在深情目送的情景。
下列有关现代科技的说法,正确的是()。
能力:指从事各种活动、适应生存所必须的且影响活动效果的心理特征的总和。能力决定了员工可以达到的绩效水平。能力又分为智力和躯体能力,它不同于知识和技能。根据以上定义,下面属于能力范畴的为( )
计算机之所以能按人们的意图自动进行工作,最直接的原因是因为采用了()。
最新回复
(
0
)