首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)∣0≤x≤1,0≤y≤1},计算二重积分 I=xyf″xy(x,y)dxdy.
[2011年] 已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)∣0≤x≤1,0≤y≤1},计算二重积分 I=xyf″xy(x,y)dxdy.
admin
2019-05-10
80
问题
[2011年] 已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,
f(x,y)dxdy=a,其中D={(x,y)∣0≤x≤1,0≤y≤1},计算二重积分
I=
xyf″
xy
(x,y)dxdy.
选项
答案
将二重积分化为累次积分直接进行计算.同定积分一样,要让被积函数含偏导的子函数先进入微分号,用分部积分法求出二元函数. 解一 将二重积分化为累次积分进行计算得到 I=[*]xyf″
xy
(x,y)dxdy=∫
0
1
ydy∫
0
1
xf″
xy
(x,y)dx=∫
0
1
ydy∫
0
1
xdf′
y
(x,y) =∫
0
1
[xf′
y
(x,y)∣
0
1
一∫
0
1
f′
y
(x,y)dx]ydy=∫
0
1
f′
y
(1,y)ydy一∫
0
1
∫
0
1
f′
y
(x,y)dxdy =-∫
0
1
dx∫
0
1
yf′
y
(x,y)dy(因f(1,y)=0,故f′
y
(1,y)=0) =-∫
0
1
[∫
0
1
ydf(x,y)]dx=-[∫
0
1
yf(x,y)∣
0
1
dx-∫
0
1
dx∫
0
1
(x,y)dy] =一∫
0
1
f(x,1)dx+∫
0
1
∫
0
1
f(x,y)dxdy=[*]f(x,y)dxdy=a. 解二 因f(x,y)的二阶导数连续,故f″
xy
(x,y)=f″
xy
(x,y),所以f″
xy
(x,y)dy=f″
yx
(x,y)dy=df′
x
(x,y), 又f′
x
(x,y)dx=df(x,y),则 I=∫
0
1
xdx∫
0
1
yf″
xy
(x,y)dy=∫
0
1
xdx∫
0
1
yf″
yx
(x,y)dy=∫
0
1
xdx∫
0
1
ydf′
x
(x,y) =∫
0
1
[yf′
x
(x,y)∣
0
1
—∫
0
1
f′
x
(x,y)dy]xdx=∫
0
1
f′
x
(x,1)dx一∫
0
1
xdx∫
0
1
f′
x
(x,y)dy =一∫
0
1
dy∫
0
1
xf′(x,y)dx (因f(x,1)=0,故f′
x
(x,1)=0) =∫
0
1
dy∫
0
1
xdf(x,y)=一∫
0
1
[xf(x,y)∣
0
1
一∫
0
1
f(x,y)dx]dy=∫
0
1
∫
0
1
f(x,y)dxdy=a.
解析
转载请注明原文地址:https://kaotiyun.com/show/SVV4777K
0
考研数学二
相关试题推荐
设函数f(χ)满足χf′(χ)-2f(χ)=-χ,且由曲线y=f(χ),χ=1及χ轴(χ≥0)所围成的平面图形为D.若D绕χ轴旋转一周所得旋转体体积最小,求:(1)曲线y=f(χ);(2)曲线在原点处的切线与曲线及直线χ=1所围成的平面
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设α1,…,αm,β为m+1个n维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量.若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
为清除井底污泥,用缆绳将抓斗放入井底,抓起污泥提出井口.设井深30m,抓斗自重400N,缆绳每米重50N,抓斗盛污泥2000N,提升速度为3m/s,在提升过程中,污泥以20N/s的速度从抓斗中漏掉.现将抓斗从井底提升到井口,问克服重力做功多少?
设f(χ,y)=,试讨论f(χ,y)在点(0,0)处的连续性,可偏导性和可微性.
曲线y=的渐近线的条数为().
微分方程|x=1满足y=1的特解为__________。
定积分中值定理的条件是f(x)在[a,b]上连续,结论是________.
[2017年]设矩阵A=的一个特征向量为,则a=________.
随机试题
在论文的组成部分中,位于正文之后、读者最关心的文章精髓部分是()。
妊娠合并巨细胞病毒感染下列哪项是不恰当的
在人本主义(询者中心)治疗中最重要的是
案例1.项目概况2015年10月8日,A公司与建工B公司签订《建设工程施工合同》,明确某商用建筑土建施工由建工B公司承包,建筑面积为11.5×104m2。2016年9月25日项目主体结构封顶。项目施工现场塔式起重机2台,施工升降机2台,
背景某高科技集团在上海浦东投资兴建总部办公大楼,为了加快建设进度、尽快投入使用,业主采用平行承发包模式,将土建工程、装饰装修工程分别与两家不同的工程公司AB分别签署了相应的土建施工合同、装饰装修施工合同。施工过程中发生如下事件:事件一:
下列关于期货合约最小变动价位的说法,不正确的是()。
旅行社违反《责任保险规定》有关规定,拒不接受旅游行政管理部门的管理和监督检查的,由旅游行政管理部门限期改正,给予警告,逾期不改正的,可以处罚款()。
对教师而言,课程资源指的就是教学大纲和教科书。()
设f(u)为可微函数,且f(0)=0,则
数据库应用系统中的核心问题是( )。
最新回复
(
0
)