首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列旋转体的体积V: (Ⅰ)由曲线y=x2,x=y2所围图形绕x轴旋转所成旋转体; (Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
求下列旋转体的体积V: (Ⅰ)由曲线y=x2,x=y2所围图形绕x轴旋转所成旋转体; (Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
admin
2018-06-27
52
问题
求下列旋转体的体积V:
(Ⅰ)由曲线y=x
2
,x=y
2
所围图形绕x轴旋转所成旋转体;
(Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
选项
答案
(Ⅰ)如图3.2,交点(0,0),(1,1),则所求体积为 V=∫
0
1
π[ [*]-(x
2
)
2
]dx=π∫
0
1
(x-x
4
)dx [*] (Ⅱ)如图3.3,所求体积为 V=2∫
0
2πa
yxdx=2π∫
0
2π
a(1-cost)a(t-sint)a(1-cost)dt =2πa
3
∫
0
2π
(1-cost)
2
(t-sint)dt =2πa
3
∫
0
2π
(1-cost)
2
tdt-2πa
3
∫
-π
π
(1-cost)
2
sintdt =2πa
3
∫
0
2π
(1-cost)
2
tdt [*] 2πa
3
∫
-π
π
[1-cos(u+π)]
2
(u+π)du =2πa
3
∫
-π
π
(1+cosu)
2
udu+2π
2
a
3
∫
-π
π
(1+cosu)
2
du =4π
2
a
3
∫
0
π
(1+cosu)
2
du=4π
2
a
3
∫
0
π
(1+2cosu+cos
2
u)du=4π
2
a
3
[*] =6π
3
a
3
. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Spk4777K
0
考研数学二
相关试题推荐
在区间(一∞,+∞)内零点的个数为()
设f(x)是以T为周期的连续函数(若下式中用到f’(x),则设f’(x)存在),则以下4个结论中不正确的是()
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y/(0)=3/2的解.
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形,问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[*]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒为1
计算极限.
求极限:
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|,又f(1)=0,证明:
令f(x)=arctanx,由微分中值定理得[*]
随机试题
作图分析垄断竞争厂商长期均衡状态。
数据库系统的主要作用是_______。
母乳喂养儿肠道主要的细菌是
幽门梗阻的典型特征是
朱镕基同志在2001年视察北京国家会计学院时,为北京国家会计学院题词的内容不包括( )。
货币市场基金是我国基金市场一类重要的产品类型,以“余额宝”为代表的货币市场基金近年来迅速发展,成为投资者现金管理的良好工具。但货币基金快速发展的同时,同样面临多方面的风险,如T+0赎回方式带来的流动性风险,期限错配问题带来的投资管理风险等。2016年12月
你今天的着装.根据着装学,我们觉得你这个人比较拘谨,你怎么解释?(2012年6月29日湖南省法检系统公务员面试真题)
下列关于编译系统对某高级语言进行翻译的叙述中,错误的是(10)。
重载的关系运算符和逻辑运算符的返回类型应当是_______。
Whatistherestaurantfamousfor?
最新回复
(
0
)