首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,f(1)=0,令φ(x)=x2f(x),证明:存在ξ∈(0,1),使得φ’’(ξ)=0.
设f(x)二阶可导,f(1)=0,令φ(x)=x2f(x),证明:存在ξ∈(0,1),使得φ’’(ξ)=0.
admin
2019-07-19
33
问题
设f(x)二阶可导,f(1)=0,令φ(x)=x
2
f(x),证明:存在ξ∈(0,1),使得φ
’’
(ξ)=0.
选项
答案
φ(0)=φ(1)=0,由罗尔定理,存在ξ
1
∈(0,1),使得φ
’
(ξ
1
)=0, 而φ
’
(x)=2xf(x)+x
2
f
’
(x), φ
’
(0)=φ
’
(ξ
1
)=0,由罗尔定理,存在ξ∈(0,ξ
1
)[*](0,1),使得φ
’’
(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/TAc4777K
0
考研数学一
相关试题推荐
将f(x)=arctanx展开成x的幂级数.
设y=,则y(n)等于()
参数a取何值时,线性方程组有无数个解?求其通解.
设函数f’(x)在[a,b]上连续,且f(a)=0,证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
设函数f(x)连续,则在下列变上限积分定义的函数中,必为偶函数的是()
设f(x)在x=0处二阶可导,f(0)=0且=2,则().
设矩阵A=(aij)n×m的秩为n,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组α1=(Ar+1,1,…,Ar+1,n)Tα2=(Ar+2,1,…,Ar+2,n)T…αn—
若极限=A,则函数f(x)在x=a处
曲线y=的斜渐近线为_______.
设3阶矩阵A的各行元素之和都为2,向量α1=(一1,1,1)T,α2=(2,一1,1)T都是齐次线性方程组AX=0的解.求A.
随机试题
(2013年)关于企业战略管理的说法,错误的是()。
什么是认识过程的第二次飞跃?这次飞跃的重要性和实现条件是什么?
流行性乙型脑炎的传播途径是
在借贷记账法下,末期结账后,一般有余额的账户有()。
保证立法的社会主义方向和性质的重要原则是()。
扩散:是指一种物质的分子分散到另一种物质的分子中,最后均匀分布的现象。扩散现象生动地证明,无论是那一种形态的物质,它们的分子无时无刻不在运动,当它们互相接触的时候,彼此就要扩散到对方当中去。随着温度的升高,分子无规则运动的速度增大,扩散也加快。根据
A、B两地位于同一条河上,B地在A地下游100千米处。甲船从A地、乙船从B地同时出发,相向而行,甲船到达B地、乙船到达A地后,都立即按原来路线返航。水速为2米/秒,且两船在静水中的速度相同。如果两船两次相遇的地点相距20千米,那么两船在静水中的速度是(
根据下图所示的记忆实验结果,回答问题。从图中可以看出,刺激呈现时间影响的是
The"sing-song"theorywasputforwardbythegreatDanishlinguist______.
Sinceitistoolatetochangemymindnow,Iam______tocarryingouttheplan.
最新回复
(
0
)