首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b.证明:A可对角化.
admin
2021-11-15
45
问题
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b.证明:A可对角化.
选项
答案
由(aE-A)(bE-A)=0,得|aE-A|·|bE-A|=0,则|aE-A|=0或者|bE-A|=0.又由(aE-A)(bE-A)=0,得r(aE-A)+r(bE-A)≤n, 同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n, 所以r(aE-A)+r(bE-A)=n, (1)若|aE-A|≠0,则r(aE-A)=n,所以r(bE-A)=0,故A=bE. (2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE. (3)若|aE-A|=0且|bE-A|=0,则a、b都是矩阵A的特征值 方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个; 方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个. 因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Tey4777K
0
考研数学二
相关试题推荐
=_________.
证明:r(A)=r(ATA).
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
证明线性方程组有解的充分必要条件是方程组是同解方程组。
设A是m×n矩阵,B是n×m矩阵,则()。
设A是正交矩阵,且|A|<0,证明:|E+A|=0.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.求A。
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵。
随机试题
对慢性呼衰患者采取下列哪些措施易致呼吸道通畅()
对输血的病情观察,不包括
患者,男,28岁。上腹部灼痛1年,饥饿时加重,进食后可缓解,伴泛酸。查体:上腹部稍偏右有压痛。应首先考虑的是()
选项所列行为中构成侵犯注册商标专用权的是?
下列选项不属于空气的减湿处理方法的是()。
()是指债务人或者第三人不转移对法定财产的占有,将该财产作为债权的担保。
下列关于企业现金清查的说法,正确的有()。
论述陶行知的“教学做合一”的思想。
Giventheadvantagesofelectronicmoney,youmightthinkthatwewouldmovequicklytothecashlesssocietyinwhichallpaymen
(1)Humanmigration:thetermisvague.Whatpeopleusuallythinkofisthepermanentmovementofpeoplefromonehometoanother
最新回复
(
0
)