首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b.证明:A可对角化.
admin
2021-11-15
55
问题
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b.证明:A可对角化.
选项
答案
由(aE-A)(bE-A)=0,得|aE-A|·|bE-A|=0,则|aE-A|=0或者|bE-A|=0.又由(aE-A)(bE-A)=0,得r(aE-A)+r(bE-A)≤n, 同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n, 所以r(aE-A)+r(bE-A)=n, (1)若|aE-A|≠0,则r(aE-A)=n,所以r(bE-A)=0,故A=bE. (2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE. (3)若|aE-A|=0且|bE-A|=0,则a、b都是矩阵A的特征值 方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个; 方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个. 因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Tey4777K
0
考研数学二
相关试题推荐
设f(x)在(-a,a)(a﹥0)内连续,且f’(0)=2.证明:对0﹤x﹤a,存在0﹤θ﹤1,使得.
设.求.
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
一条均匀链条挂在一个无摩擦的钉子上,链条长18m,运动开始时链条一遍下垂8m,另外一遍下垂10m,问整个链条滑过钉子需要多长时间?
设f(x)在[a,b]上连续,证明:.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数。
设的一个基础解系为,写出的通解并说明理由。
设齐次线性方程组其中ab≠0,n≥2,讨论a,b取何值时,方程组只有零解,有无穷多个解?在有无穷多个解时,求出其通解。
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等。证明:|A|≠0.
设Φ1(x),Φ2(x),Φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为()。
随机试题
对于大多数化学反应,升高温度,反应速率增大。()
不属于方剂运用变化的项是
给予肺炎高热患者降温处理时,正确的操作是
关于手足搐搦症的隐性体征正确的是
关于存货叙述正确的是( )。
甲市公安机关的法医董某,一天在送孩子去幼儿园的途中亲眼看见了李某抢劫王某,造成王某重伤,下列说法错误的有()。
(2017年真题)在某个时期内,个体对某种刺激特别敏感,过了这个时期,同样的刺激则影响很小或没有影响。这个时期称为()。
教师的医疗同当地国家公务员享受同等的待遇;()对教师进行身体健康检查,并因地制宜安排教师进行休养。
下图为我国4幅省级行政区域图,按图完成下列问题。少数民族中人数最多的民族所在的省级行政区域是()。
假设你是一个企业的质检员,厂里准备引进一台新设备,可以更好的提高生产力,你该怎么办?
最新回复
(
0
)