首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(08)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
(08)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
admin
2018-08-01
122
问题
(08)设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值-1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
(Ⅰ)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)令P=[α
1
,α
2
,α
3
],求P
-1
AP.
选项
答案
(Ⅰ)设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用Aα
1
=-α
1
,Aα
2
=α
2
, -k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①-②,得 2k
1
α
1
-k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关.从而由③式知k
1
=k
2
=0,代入①式得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关. (Ⅱ)由题设条件可得 AP=A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
] =[-α
1
,α
2
,α
2
+α
3
]=[α
1
,α
2
,α
3
][*] 由(Ⅰ)知矩阵P可逆,用P
-1
左乘上式两端,得 P
-1
AP=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/U2j4777K
0
考研数学二
相关试题推荐
设x与y均大于0且x≠y,证明
设ξ1=为矩阵A=的一个特征向量.(I)求常数a,b及ξ1所对应的特征值;(Ⅱ)矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为其中P=(e1,e2,e3).若Q=(e1,一e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
求微分方程x2y’+xy=y2满足初始条件y(1)=1的特解.
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
随机试题
大型电子计算机房选择火灾探测器时。应选用:[2009年第120题]
各种文字的“字符”根据与语言的音义关系,可以分为
下列哪个矩阵不是初等矩阵()
牙冠唇、颊、舌面突度的位置是A.前牙在颈1/3;后牙在颈1/3B.前牙在颈1/3;后牙颊面在颈1/3,舌面在中1/3C.前牙在颈1/3;后牙颊面在中1/3,舌面在中1/3D.前牙在中1/3;后牙颊面在颈1/3,舌面在中1/3E.前牙在中1/3;舌
女性,33岁,哺乳期发现炎性乳癌,乳腺皮肤橘皮样变,肿块侵及整个乳房,治疗方案宜选择
患者女,50岁。因乏力、低热3个月,咳嗽,胸闷2周来诊。查体:T37.8℃,双侧锁骨上窝可扪及黄豆大小肿大淋巴结,双肺未闻及干、湿啰音。胸部CT示:双肺散在小结节影,双肺门淋巴结肿大。该患者还可能出现下列哪些表现
今后执业药师管理工作的主要任务是
下列固定资产的折旧方法中,属于加速折旧的有()。
()承担缴纳社会保险费的义务,是社会保险基金的主要缴纳者。
编写如下程序:PrivateSubCommand1_Click()DimnAsLong,sAsStringn=InputBox("输入一个数")DoWhilen0Printn\10
最新回复
(
0
)