首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
admin
2016-10-27
24
问题
已知α
1
,α
2
,α
3
是齐次线性方程组Ax=0的一个基础解系,证明α
1
+α
2
,α
2
+α
3
,α
3
+α
1
也是该方程组的一个基础解系.
选项
答案
由A(α
1
+α
2
)=Aα
1
+Aα
2
=0+0=0知,α
1
+α
2
是齐次方程组Ax=0的解.类似可知α
2
+α
3
,α
3
+α
1
也是Ax=0的解. 若k
1
(α
1
+α
2
)+k
2
(α
2
+α
3
)+k
3
(α
3
+α
1
)=0,即 (k
1
+k
3
)α
1
+(k
1
+k
2
)α
2
+(k
2
+k
3
)α
3
=0, 因为α
1
,α
2
,α
3
是基础解系,它们是线性无关的,故 [*] 由于此方程组系数行列式D=[*]=2≠0,故必有k
1
=k
2
=k
3
=0,所以α
1
+α
2
,α
2
+α
3
, α
3
+α
1
线性无关. 根据题设,Ax=0的基础解系含有3个线性无关的向量,所以α
1
+α
2
,α
2
+α
3
,α
3
+α
1
是方程组Ax=0的基础解系.
解析
按基础解系的定义,要证三个方面:
①α
1
+α
2
,α
2
+α
3
,α
3
+α
1
是解;
②它们线性无关;
③向量个数等于n一r(A).
转载请注明原文地址:https://kaotiyun.com/show/UTu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
[*]
A、 B、 C、 D、 D
[*]
A、 B、 C、 D、 A
在某公共汽车站甲、乙、丙三人分别等1,2,3路公共汽车.设每个人等车时间(单位:min)均服从[0,5]上的均匀分布,求三人中至少有两人等车时间不超过2min的概率.
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式丨B-1-E丨=__________.
设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且
随机试题
A.碱性磷酸酶B.酸性磷酸酶C.乳酸脱氢酶D.α酸性糖蛋白E.α胚胎抗原前列腺癌血清增高的是
25岁,初产妇,双胎妊娠,第一儿为单臀先露,娩出的新生儿2600g,Apgar评为8分。阴道检查知第二儿为肩先露,破膜后上肢脱出,胎心144次/分,有力、规律。紧急处理应是下列何项
颏孔的位置在
加速试验的条件
建设工程勘察合同履约保证金的担保有效期自发包人与勘察人签订的合同生效之日起至发包人签收最后一批勘察成果文件之日起()日后失效。
Excel编辑区的功能有()。
下列关于个人住房贷款信用风险防范的说法,正确的是()。
一般资料:求助者,女性,17岁,中学生。案例介绍:求助者的一位男老师,英俊潇洒,是许多女生心目中的白马王子。求助者曾向该老师表白自己的爱慕之情,但老师明确告诉她中学生不要谈恋爱,拒绝了她的感情。求助者认为是自己胖所致,发誓一定要减肥,为此节食,每日
一个人认为自己考试失败是因为试题太难太偏,这种归因属于()。
根据《联合国国际货物销售合同公约》,发盘内容“十分确定”应解释为()。[南京理工大学2011国际商务硕士]
最新回复
(
0
)