首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关, 且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn. 求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关, 且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn. 求方程组AX=b的通解.
admin
2019-04-22
95
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n-1个列向量线性相关,后n-1个列向量线性无关,
且α
1
+2α
2
+…+(n-1)α
n-1
=0,b=α
1
+α
2
,…+α
n
.
求方程组AX=b的通解.
选项
答案
因为α
1
+2α
2
+…+(n-1)α
n-1
=0,所以α
1
+2α
2
+…+(n-1)α
n-1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…n-1,0)
T
, 又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/UkV4777K
0
考研数学二
相关试题推荐
已知四维向量组α1,α2,α3,α4线性无关,且向量β1=α1+α3+α4,β2=α2一α4,β3=α3+α4,β4=α2+α3,β5=2α1+α2+α3.则r(β1,β2,β3,β4,β5)=()
设A是任一n阶矩阵,下列交换错误的是
设λ=2是非奇异矩阵A的一个特征值,则矩阵有一特征值等于()
设向量组α1,α2,α3,线性无关,则下列向量组中线性无关的是()
设A,B均为n阶可逆矩阵,则下列运算正确的是()
设f(χ)在[0,1]上二阶可导,且f(0)=f′(0)=f(1)=f′(1)=0.证明:方程f〞(χ)-f(χ)=0在(0,1)内有根.
设f(χ)在[0,+∞)内可导且f(0)=1,f′(χ)<f(χ)(χ>0).证明:f(χ)<eχ(χ>0).
随机试题
一个育龄妇女婚前检查,风疹IgG抗体阴性。婚后育龄妇女准备要小孩,但当地每年都有风疹散在流行。为防止先天性风疹综合征发生的最好办法是
心肌梗死和心绞痛的主要区别特点是
A.麦冬B.甘草C.商陆D.罗布麻叶E.合欢皮主要含强心苷的中药是()。
最早研究暗示现象的人是()。
短时记忆达到巅峰是在个体的()。
党的十七届三中全会通过的《中共中央关于推进农村改革发展若干重大问题的决定》指出:“建立健全土地承包经营权流转,按照依法自愿有偿原则,允许农民以转包、出租、互换、转让、股份合作等形式流转土地承包经营权,发展多种形式的适度规模经营。”上述决定有利于()。
什么是程序化教学?如何开展?(2018年南京师大)
AdiscoveryinNewJerseyactuallycontributedtotheearlyeconomicdevelopmentoftheU.S.and,in1714aworkeruncoveredag
In1945leadersfrom51countriesmetinSanFrancisco,California,andorganizedtheUnitedNations(oftencalledtheUN).Worl
Formostpeople,keepingfitinvolvesanestablishedexerciseroutinebuiltaroundaregularweeklyschedule.Butwhatifyourj
最新回复
(
0
)