首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0( )
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0( )
admin
2021-02-25
73
问题
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0( )
选项
A、当n>m时仅有零解
B、当n>m时必有非零解
C、当m>n时仅有零解
D、当m>n时必有非零解
答案
D
解析
本题考查齐次线性方程组仅有零解的条件和矩阵的秩的性质.要求考生掌握:(1)对于m阶矩阵AB,若r(AB)=m,则(AB)x=0仅有零解;若r(AB)<m,则(AB)x=0必有非零解.(2)矩阵的秩的公式:r(AB)≤min{r(A),r(B)},r(A
m×n
)≤min{m,n}.
当m>n时,r(A)≤n<m,r(AB)≤min{r(A),r(B)}≤n<m,所以方程组(AB)x=0必有非零解.因而选D.
转载请注明原文地址:https://kaotiyun.com/show/VY84777K
0
考研数学二
相关试题推荐
已知线性方程组(1)a、b为何值时,方程组有解?(2)当方程组有解时,求出方程组的导出组的一个基础解系.(3)当方程组有解时,求出方程组的全部解.
设f(χ)在[0,1]二阶可导,|f(0)|≤a,|f(1)|≤a,|f〞(χ)|≤b,a,b为非负数,求证:c∈(0,1),有|f′(c)|≤2a+b.
分段函数一定不是初等函数,若正确,试证之;若不正确,试说明它们之间的关系?
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
设X服从N(1,4),Y服从N(2,9),且X与Y相互独立,如果服从N(0,1),求常数a,b.
设实对称矩阵A=,求可逆矩阵P,使P一1AP为对角矩阵,并计算行列式|A一E|的值.
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:(1)aij=Aij←→ATA=E且|A|=1;(2)aij=一Aij←→ATA=E且|A|=一1.
设φ(x)在x=a的某邻域内有定义,f(x)=|x-a|φ(x).则“φ(x)在x=a处连续”是“f(x)在x=a处可导”的()
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为()
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为().
随机试题
A.胸骨左缘B.胸骨右缘C.心尖内侧D.心前区听诊开瓣音最清楚的部位是
某猪场2岁种公猪,精神沉郁,步态强拘,拱背,腰部触诊敏感,常做排尿姿势。尿检可见红细胞、白细胞、盐类结晶、肾上皮细胞。该病可能的诊断是()
A.表寒里热证B.表热里寒证C.上寒下热证D.上热下寒证E.真热假寒证下利清谷,小便清长,舌淡苔白,面赤口渴多见于
总监理工程师负责项目监理机构内所有监理人员利益的分配。这表明,总监理工程师是项目监理的()。
关于混凝土或抹灰基层雨期涂刷涂料的基层含水率说法,正确的是()。
会计机构和会计人员应当按照国家统一的会计制度的规定对原始凭证进行认真审核,对记载不准确、不完整的原始凭证()。
鲁迅在上海期间的创作主要是()文体。
计算机系统中,【】通常用8位二进制组成,可代表一个数字、一个字母或一个特殊符号。
关于因特网的域名系统,以下哪种说法是错误的?______。
BlowingHotandColdClimatechangemaybeslowanduncertain,butthatisnoexcuseforinaction.Onereasonwhyuncertaint
最新回复
(
0
)