首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0( )
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0( )
admin
2021-02-25
74
问题
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0( )
选项
A、当n>m时仅有零解
B、当n>m时必有非零解
C、当m>n时仅有零解
D、当m>n时必有非零解
答案
D
解析
本题考查齐次线性方程组仅有零解的条件和矩阵的秩的性质.要求考生掌握:(1)对于m阶矩阵AB,若r(AB)=m,则(AB)x=0仅有零解;若r(AB)<m,则(AB)x=0必有非零解.(2)矩阵的秩的公式:r(AB)≤min{r(A),r(B)},r(A
m×n
)≤min{m,n}.
当m>n时,r(A)≤n<m,r(AB)≤min{r(A),r(B)}≤n<m,所以方程组(AB)x=0必有非零解.因而选D.
转载请注明原文地址:https://kaotiyun.com/show/VY84777K
0
考研数学二
相关试题推荐
设矩阵,问k为何值时,存在可逆阵P,使得P-1AP=A,求出P及相应的对角阵.
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2x-y)+g(x,xy),求
设χy=χf(χ)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是z,y的函数.证明:[z-g(z)]=[y-f(z)].
设函数f(μ)在(0,+∞)内具有二阶导数,且z=满足等式=0。验证f’’(μ)+=0;
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
设X服从N(1,4),Y服从N(2,9),且X与Y相互独立,如果服从N(0,1),求常数a,b.
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:(1)aij=Aij←→ATA=E且|A|=1;(2)aij=一Aij←→ATA=E且|A|=一1.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
设g(x)在x=0的某邻域内连续,且,又设f(x)在该邻域内存在二阶导数,且满足x2f”(x)-[f’(x)]2=xg(x),则()
随机试题
护理水、电解质和酸碱失衡病人的预期目标是()
管理的二重性是指
下列梗死灶常发生化脓的是
既能祛风湿,又能退虚热的药是
呋喃唑酮主要用于()。
通常情况下,导致商业银行破产倒闭的直接原因是()。
社会服务机构财务管理的功能主要包括()。
不安抗辩权,是指当事人瓦负债务,有先后履行顺序的,先履行的一方有确切证据表明另一方丧失履行债务能力时,在对方没有履行或者没有提供担保之前,有权中止合同履行的权利。规定不安抗辩权是为了切实保护当事人的合法权益,防止借合同进行欺诈,促使对方履行义务。以下行使了
A、 B、 C、 D、 D
设函数f(u)在(0,+∞)内具有二阶导数,且z==0.(1)验证f"(u)+=0;(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
最新回复
(
0
)